用户意图的视觉信息排名系统

Swe Nwe Nwe Htun, Thi Thi Zin, Mitsuhiro Yokota, Khin Mo Mo Tun
{"title":"用户意图的视觉信息排名系统","authors":"Swe Nwe Nwe Htun, Thi Thi Zin, Mitsuhiro Yokota, Khin Mo Mo Tun","doi":"10.1109/GCCE.2016.7800316","DOIUrl":null,"url":null,"abstract":"Nowadays, the rapid growth of World Wide Web has been resulted in an exponential growth of the data and visual information with full of interesting bits of contents that can be found online. In such situations, finding out images that satisfy user intentions from a huge collection is more and more required, which emphasizes the importance of web image search and visual information ranking system as filters for users. For these reasons, we propose user-centric visual information rank and re-ranking system for web image search to explore the global trends in innovation by combining the sharing patterns of social network. Specifically, we establish an embedded Markov Chain Model along with local and global image features of visual information content for ranking image search engine. In order to evaluate the performance of proposed method, we will conduct a series of experiments based on social media platforms and a real-life social Yelp network dataset with respect to consumer perspectives.","PeriodicalId":416104,"journal":{"name":"2016 IEEE 5th Global Conference on Consumer Electronics","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"User-intent visual information ranking system\",\"authors\":\"Swe Nwe Nwe Htun, Thi Thi Zin, Mitsuhiro Yokota, Khin Mo Mo Tun\",\"doi\":\"10.1109/GCCE.2016.7800316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the rapid growth of World Wide Web has been resulted in an exponential growth of the data and visual information with full of interesting bits of contents that can be found online. In such situations, finding out images that satisfy user intentions from a huge collection is more and more required, which emphasizes the importance of web image search and visual information ranking system as filters for users. For these reasons, we propose user-centric visual information rank and re-ranking system for web image search to explore the global trends in innovation by combining the sharing patterns of social network. Specifically, we establish an embedded Markov Chain Model along with local and global image features of visual information content for ranking image search engine. In order to evaluate the performance of proposed method, we will conduct a series of experiments based on social media platforms and a real-life social Yelp network dataset with respect to consumer perspectives.\",\"PeriodicalId\":416104,\"journal\":{\"name\":\"2016 IEEE 5th Global Conference on Consumer Electronics\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 5th Global Conference on Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2016.7800316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 5th Global Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2016.7800316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,万维网的快速发展导致了数据和视觉信息的指数级增长,其中充满了有趣的内容,可以在网上找到。在这种情况下,越来越需要从海量的图片中找出符合用户意图的图片,这就强调了网络图像搜索和视觉信息排序系统作为过滤器对用户的重要性。基于此,我们提出了以用户为中心的网络图像搜索视觉信息排序和再排序系统,并结合社交网络的共享模式来探索全球创新趋势。具体而言,我们结合视觉信息内容的局部和全局图像特征,建立了嵌入式马尔可夫链模型,用于对图像搜索引擎进行排名。为了评估所提出方法的性能,我们将基于社交媒体平台和现实生活中的社交Yelp网络数据集,从消费者的角度进行一系列实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User-intent visual information ranking system
Nowadays, the rapid growth of World Wide Web has been resulted in an exponential growth of the data and visual information with full of interesting bits of contents that can be found online. In such situations, finding out images that satisfy user intentions from a huge collection is more and more required, which emphasizes the importance of web image search and visual information ranking system as filters for users. For these reasons, we propose user-centric visual information rank and re-ranking system for web image search to explore the global trends in innovation by combining the sharing patterns of social network. Specifically, we establish an embedded Markov Chain Model along with local and global image features of visual information content for ranking image search engine. In order to evaluate the performance of proposed method, we will conduct a series of experiments based on social media platforms and a real-life social Yelp network dataset with respect to consumer perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High power factor boost PFC controller with feedforward adaptive on-time control Comprehensive deformed map generation for wristwatch-type wearable devices based on landmark-based partitioning Analysis of fill-in-blank problem solution results in Java programming course Accuracy improvement in human detection using HOG features on train-mounted camera New intelligent glass curtain with IT2FLC for conversion efficiency enhancement of PV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1