利用隐马尔可夫模型和小波进行人脸识别

M. Bicego, U. Castellani, Vittorio Murino
{"title":"利用隐马尔可夫模型和小波进行人脸识别","authors":"M. Bicego, U. Castellani, Vittorio Murino","doi":"10.1109/ICIAP.2003.1234024","DOIUrl":null,"url":null,"abstract":"In this paper, a new system for face recognition is proposed, based on hidden Markov models (HMM) and wavelet coding. A sequence of overlapping sub-images is extracted from each face image, computing the wavelet coefficients for each of them. The whole sequence is then modelled by using hidden Markov models. The proposed method is compared with a DCT coefficient-based approach (Kohir et al. (1998)), showing comparable results. By using an accurate model selection procedure, we show that results proposed in Kohir can be improved even more. The obtained results outperform all results presented in the literature on the Olivetti Research Laboratory (ORL) face database, reaching a 100% recognition rate. This performance proves the suitability of HMM to deal with the new JPEG2000 image compression standard.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Using hidden Markov models and wavelets for face recognition\",\"authors\":\"M. Bicego, U. Castellani, Vittorio Murino\",\"doi\":\"10.1109/ICIAP.2003.1234024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new system for face recognition is proposed, based on hidden Markov models (HMM) and wavelet coding. A sequence of overlapping sub-images is extracted from each face image, computing the wavelet coefficients for each of them. The whole sequence is then modelled by using hidden Markov models. The proposed method is compared with a DCT coefficient-based approach (Kohir et al. (1998)), showing comparable results. By using an accurate model selection procedure, we show that results proposed in Kohir can be improved even more. The obtained results outperform all results presented in the literature on the Olivetti Research Laboratory (ORL) face database, reaching a 100% recognition rate. This performance proves the suitability of HMM to deal with the new JPEG2000 image compression standard.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

本文提出了一种基于隐马尔可夫模型和小波编码的人脸识别系统。从每个人脸图像中提取重叠子图像序列,计算每个子图像的小波系数。然后用隐马尔可夫模型对整个序列进行建模。将所提出的方法与基于DCT系数的方法(Kohir et al.(1998))进行了比较,结果具有可比性。通过使用精确的模型选择程序,我们表明Kohir提出的结果可以得到更大的改进。获得的结果优于Olivetti研究实验室(ORL)人脸数据库上的所有文献结果,达到100%的识别率。这一性能证明了隐马尔可夫算法在JPEG2000图像压缩标准下的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using hidden Markov models and wavelets for face recognition
In this paper, a new system for face recognition is proposed, based on hidden Markov models (HMM) and wavelet coding. A sequence of overlapping sub-images is extracted from each face image, computing the wavelet coefficients for each of them. The whole sequence is then modelled by using hidden Markov models. The proposed method is compared with a DCT coefficient-based approach (Kohir et al. (1998)), showing comparable results. By using an accurate model selection procedure, we show that results proposed in Kohir can be improved even more. The obtained results outperform all results presented in the literature on the Olivetti Research Laboratory (ORL) face database, reaching a 100% recognition rate. This performance proves the suitability of HMM to deal with the new JPEG2000 image compression standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1