{"title":"用平稳收益因子预测债券风险溢价","authors":"T. Hoogteijling, M. Martens, Michel van der Wel","doi":"10.2139/ssrn.3824896","DOIUrl":null,"url":null,"abstract":"The standard way to summarize the yield curve is to use the first three principal components of the yield curve, resulting in level, slope and curvature factors. Yields, however, are non-stationary. We analyze the first three principal components of yield changes, which correspond to changes in level, slope and curvature. The new factors based on changes in yields have strong predictive power for bond risk premia, in contrast to the factors based on yield levels. We also provide insights into the impact this has on the added value of macro data for bond risk premia predictions and the recent conclusion that machine learning provides better forecasts than linear regression.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting Bond Risk Premia using Stationary Yield Factors\",\"authors\":\"T. Hoogteijling, M. Martens, Michel van der Wel\",\"doi\":\"10.2139/ssrn.3824896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard way to summarize the yield curve is to use the first three principal components of the yield curve, resulting in level, slope and curvature factors. Yields, however, are non-stationary. We analyze the first three principal components of yield changes, which correspond to changes in level, slope and curvature. The new factors based on changes in yields have strong predictive power for bond risk premia, in contrast to the factors based on yield levels. We also provide insights into the impact this has on the added value of macro data for bond risk premia predictions and the recent conclusion that machine learning provides better forecasts than linear regression.\",\"PeriodicalId\":251522,\"journal\":{\"name\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management & Analysis in Financial Institutions eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3824896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3824896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting Bond Risk Premia using Stationary Yield Factors
The standard way to summarize the yield curve is to use the first three principal components of the yield curve, resulting in level, slope and curvature factors. Yields, however, are non-stationary. We analyze the first three principal components of yield changes, which correspond to changes in level, slope and curvature. The new factors based on changes in yields have strong predictive power for bond risk premia, in contrast to the factors based on yield levels. We also provide insights into the impact this has on the added value of macro data for bond risk premia predictions and the recent conclusion that machine learning provides better forecasts than linear regression.