前馈神经网络协方差矩阵误差的评价

S. Abid, F. Fnaiech, M. Najim
{"title":"前馈神经网络协方差矩阵误差的评价","authors":"S. Abid, F. Fnaiech, M. Najim","doi":"10.1109/ICASSP.2000.860151","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical approach for the evaluation of a feedforward neural network covariance output error matrix. It is shown how the input signals errors and the different weights errors are linked together and spread over the neural network to form the output covariance matrix error which could may be used to determine an error bound. The formulas of the output covariance matrix error is derived arising the sensitivity of the additive weight perturbations or input perturbations. The analytical formulas is validated via simulation of a function approximation example showing that the theoretical result is in agreement with simulation result.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Evaluation of the feedforward neural network covariance matrix error\",\"authors\":\"S. Abid, F. Fnaiech, M. Najim\",\"doi\":\"10.1109/ICASSP.2000.860151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theoretical approach for the evaluation of a feedforward neural network covariance output error matrix. It is shown how the input signals errors and the different weights errors are linked together and spread over the neural network to form the output covariance matrix error which could may be used to determine an error bound. The formulas of the output covariance matrix error is derived arising the sensitivity of the additive weight perturbations or input perturbations. The analytical formulas is validated via simulation of a function approximation example showing that the theoretical result is in agreement with simulation result.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.860151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.860151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种评估前馈神经网络协方差输出误差矩阵的理论方法。说明了输入信号误差和不同权重误差是如何联系在一起,并在神经网络中扩散,形成输出协方差矩阵误差,该矩阵误差可用于确定误差界。导出了考虑加性权扰动和输入扰动敏感性的输出协方差矩阵误差计算公式。通过一个函数逼近算例的仿真验证了解析公式的正确性,理论结果与仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the feedforward neural network covariance matrix error
This paper presents a theoretical approach for the evaluation of a feedforward neural network covariance output error matrix. It is shown how the input signals errors and the different weights errors are linked together and spread over the neural network to form the output covariance matrix error which could may be used to determine an error bound. The formulas of the output covariance matrix error is derived arising the sensitivity of the additive weight perturbations or input perturbations. The analytical formulas is validated via simulation of a function approximation example showing that the theoretical result is in agreement with simulation result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-based multidimensional volume registration Generation of optimum signature base sequences for speech signals Denoising of human speech using combined acoustic and EM sensor signal processing New estimation technique for a class of chaotic signals Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1