自主水下航行器的神经网络建模与广义预测控制

Jian'an Xu, Mingjun Zhang
{"title":"自主水下航行器的神经网络建模与广义预测控制","authors":"Jian'an Xu, Mingjun Zhang","doi":"10.1109/INDIN.2008.4618149","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of neural network based generalized predictive motion control to an autonomous underwater vehicle. The modified Elman neural network is used as the multi-step predictive model, the fused identification model is proposed to improve the predictive and control precision. The modified Elman neural network on-line learning improves the control system adaptability to the unpredicted operating environment for autonomous underwater vehicle. Simulations on autonomous underwater vehicle yaw velocity control are included to illustrate the effectiveness of the proposed control scheme.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Neural network modeling and generalized predictive control for an autonomous underwater vehicle\",\"authors\":\"Jian'an Xu, Mingjun Zhang\",\"doi\":\"10.1109/INDIN.2008.4618149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of neural network based generalized predictive motion control to an autonomous underwater vehicle. The modified Elman neural network is used as the multi-step predictive model, the fused identification model is proposed to improve the predictive and control precision. The modified Elman neural network on-line learning improves the control system adaptability to the unpredicted operating environment for autonomous underwater vehicle. Simulations on autonomous underwater vehicle yaw velocity control are included to illustrate the effectiveness of the proposed control scheme.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

研究了基于神经网络的广义预测运动控制在自主水下航行器中的应用。采用改进的Elman神经网络作为多步预测模型,提出了融合识别模型,提高了预测和控制精度。改进的Elman神经网络在线学习提高了自主水下航行器控制系统对不可预测操作环境的适应能力。通过对自主水下航行器横摆速度控制的仿真,验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network modeling and generalized predictive control for an autonomous underwater vehicle
This paper investigates the application of neural network based generalized predictive motion control to an autonomous underwater vehicle. The modified Elman neural network is used as the multi-step predictive model, the fused identification model is proposed to improve the predictive and control precision. The modified Elman neural network on-line learning improves the control system adaptability to the unpredicted operating environment for autonomous underwater vehicle. Simulations on autonomous underwater vehicle yaw velocity control are included to illustrate the effectiveness of the proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Safety supervision layer A feature selection method for Automated Visual Inspection systems Performances linkages between an airport and the Air Cargo Supply Chain — Evidences from Hong Kong and Singapore Kinematics control for a 6-DOF space manipulator based on ARM processor and FPGA Co-processor Remote robot control system based on DTMF of mobile phone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1