基于振动分析的新型骨整合种植体稳定性评价实验研究

S. Lu, B. Vien, M. Russ, M. Fitzgerald, W. Chiu
{"title":"基于振动分析的新型骨整合种植体稳定性评价实验研究","authors":"S. Lu, B. Vien, M. Russ, M. Fitzgerald, W. Chiu","doi":"10.12783/shm2021/36348","DOIUrl":null,"url":null,"abstract":"Osseointegrated prostheses are widely used as the treatment for femur amputation. However, this technique requires sufficient implant stability before and during the rehabilitation period to mitigate the risk of implant breakage and loosening. Hence, reliable assessment methods for the osseointegration process are essential to ensure initial and long-term implant stability. This paper aims to investigate a vibration analysis method with a novel implant design, which focuses on the analysis of the dynamic response of the femur-implant system during the simulated osseointegration process. The paper also proposes a concept of using normalized energy difference to formulate an energy index (E-index). A 133mm-long amputated artificial femur model was constrained at the proximal end with a customized clamp. The epoxy adhesives were applied at the interface between the aforementioned femur and implant to simulate the change in stiffness in mimicking the osseointegration process. A two-unidirectionalsensor setup attached to the bottom of the implant was used to record the dynamic response stimulated by an impact hammer. The results show a significant change in magnitude of the cross-spectrum during the osseointegration processes. The resonance modes in cross-spectrum for the frequency above 1000Hz are hard to distinguish suggested that the vibration of the system being hindered by the high dampening effect of the adhesive before the initial bonding of the adhesive at 300s. The plot of E-index shows a clear correlation that the E-index provided a potential quantitative approach for monitoring the stages of osseointegration. These findings highlight the feasibility of using the vibration analysis technique and E-index to quantitatively monitor the osseointegration process for future improvement on the efficiency of human health monitoring and patient rehabilitation.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATION ON A NOVEL OSSEOINTEGRATED IMPLANT STABILITY ASSESSMENT USING ON VIBRATION ANALYSIS\",\"authors\":\"S. Lu, B. Vien, M. Russ, M. Fitzgerald, W. Chiu\",\"doi\":\"10.12783/shm2021/36348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osseointegrated prostheses are widely used as the treatment for femur amputation. However, this technique requires sufficient implant stability before and during the rehabilitation period to mitigate the risk of implant breakage and loosening. Hence, reliable assessment methods for the osseointegration process are essential to ensure initial and long-term implant stability. This paper aims to investigate a vibration analysis method with a novel implant design, which focuses on the analysis of the dynamic response of the femur-implant system during the simulated osseointegration process. The paper also proposes a concept of using normalized energy difference to formulate an energy index (E-index). A 133mm-long amputated artificial femur model was constrained at the proximal end with a customized clamp. The epoxy adhesives were applied at the interface between the aforementioned femur and implant to simulate the change in stiffness in mimicking the osseointegration process. A two-unidirectionalsensor setup attached to the bottom of the implant was used to record the dynamic response stimulated by an impact hammer. The results show a significant change in magnitude of the cross-spectrum during the osseointegration processes. The resonance modes in cross-spectrum for the frequency above 1000Hz are hard to distinguish suggested that the vibration of the system being hindered by the high dampening effect of the adhesive before the initial bonding of the adhesive at 300s. The plot of E-index shows a clear correlation that the E-index provided a potential quantitative approach for monitoring the stages of osseointegration. These findings highlight the feasibility of using the vibration analysis technique and E-index to quantitatively monitor the osseointegration process for future improvement on the efficiency of human health monitoring and patient rehabilitation.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨整合假体被广泛应用于股骨截肢的治疗。然而,该技术在康复前和康复期间需要足够的种植体稳定性,以减轻种植体断裂和松动的风险。因此,可靠的骨整合过程评估方法对于确保初始和长期种植体稳定性至关重要。本文旨在研究一种新型种植体设计的振动分析方法,重点分析股骨-种植体系统在模拟骨整合过程中的动态响应。本文还提出了利用归一化能量差来制定能量指数(e指数)的概念。取长133mm的人工股骨截骨模型,近端用定制钳固定。在上述股骨与种植体之间的界面处应用环氧胶粘剂来模拟骨整合过程中刚度的变化。安装在植入物底部的双单向传感器用于记录受冲击锤刺激的动态响应。结果表明,在骨整合过程中,交叉光谱的大小发生了显著变化。1000Hz以上频率的跨谱共振模式难以分辨,说明在300s粘合剂初始粘接之前,粘合剂的高阻尼作用阻碍了系统的振动。E-index图显示了明显的相关性,E-index为监测骨整合阶段提供了一种潜在的定量方法。这些发现强调了利用振动分析技术和E-index定量监测骨整合过程的可行性,为未来提高人体健康监测和患者康复的效率提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EXPERIMENTAL INVESTIGATION ON A NOVEL OSSEOINTEGRATED IMPLANT STABILITY ASSESSMENT USING ON VIBRATION ANALYSIS
Osseointegrated prostheses are widely used as the treatment for femur amputation. However, this technique requires sufficient implant stability before and during the rehabilitation period to mitigate the risk of implant breakage and loosening. Hence, reliable assessment methods for the osseointegration process are essential to ensure initial and long-term implant stability. This paper aims to investigate a vibration analysis method with a novel implant design, which focuses on the analysis of the dynamic response of the femur-implant system during the simulated osseointegration process. The paper also proposes a concept of using normalized energy difference to formulate an energy index (E-index). A 133mm-long amputated artificial femur model was constrained at the proximal end with a customized clamp. The epoxy adhesives were applied at the interface between the aforementioned femur and implant to simulate the change in stiffness in mimicking the osseointegration process. A two-unidirectionalsensor setup attached to the bottom of the implant was used to record the dynamic response stimulated by an impact hammer. The results show a significant change in magnitude of the cross-spectrum during the osseointegration processes. The resonance modes in cross-spectrum for the frequency above 1000Hz are hard to distinguish suggested that the vibration of the system being hindered by the high dampening effect of the adhesive before the initial bonding of the adhesive at 300s. The plot of E-index shows a clear correlation that the E-index provided a potential quantitative approach for monitoring the stages of osseointegration. These findings highlight the feasibility of using the vibration analysis technique and E-index to quantitatively monitor the osseointegration process for future improvement on the efficiency of human health monitoring and patient rehabilitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1