稀疏切向网络(SPARTAN):微型飞行器运动规划

Hugh Cover, Sanjiban Choudhury, S. Scherer, Sanjiv Singh
{"title":"稀疏切向网络(SPARTAN):微型飞行器运动规划","authors":"Hugh Cover, Sanjiban Choudhury, S. Scherer, Sanjiv Singh","doi":"10.1109/ICRA.2013.6630967","DOIUrl":null,"url":null,"abstract":"Micro aerial vehicles operating outdoors must be able to maneuver through both dense vegetation and across empty fields. Existing approaches do not exploit the nature of such an environment. We have designed an algorithm which plans rapidly through free space and is efficiently guided around obstacles. In this paper we present SPARTAN (Sparse Tangential Network) as an approach to create a sparsely connected graph across a tangential surface around obstacles. We find that SPARTAN can navigate a vehicle autonomously through an outdoor environment producing plans 172 times faster than the state of the art (RRT*). As a result SPARTAN can reliably deliver safe plans, with low latency, using the limited computational resources of a lightweight aerial vehicle.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Sparse Tangential Network (SPARTAN): Motion planning for micro aerial vehicles\",\"authors\":\"Hugh Cover, Sanjiban Choudhury, S. Scherer, Sanjiv Singh\",\"doi\":\"10.1109/ICRA.2013.6630967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro aerial vehicles operating outdoors must be able to maneuver through both dense vegetation and across empty fields. Existing approaches do not exploit the nature of such an environment. We have designed an algorithm which plans rapidly through free space and is efficiently guided around obstacles. In this paper we present SPARTAN (Sparse Tangential Network) as an approach to create a sparsely connected graph across a tangential surface around obstacles. We find that SPARTAN can navigate a vehicle autonomously through an outdoor environment producing plans 172 times faster than the state of the art (RRT*). As a result SPARTAN can reliably deliver safe plans, with low latency, using the limited computational resources of a lightweight aerial vehicle.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6630967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

在户外操作的微型飞行器必须能够通过茂密的植被和空旷的田野。现有的方法没有利用这种环境的性质。我们设计了一种算法,可以在自由空间中快速规划,并有效地引导绕过障碍物。在本文中,我们提出了SPARTAN(稀疏切向网络)作为一种方法来创建横跨障碍物周围切向表面的稀疏连接图。我们发现,SPARTAN可以在室外环境中自动驾驶车辆,生成计划的速度比目前最先进的(RRT*)快172倍。因此,SPARTAN可以使用轻型飞行器有限的计算资源,以低延迟可靠地提供安全计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Tangential Network (SPARTAN): Motion planning for micro aerial vehicles
Micro aerial vehicles operating outdoors must be able to maneuver through both dense vegetation and across empty fields. Existing approaches do not exploit the nature of such an environment. We have designed an algorithm which plans rapidly through free space and is efficiently guided around obstacles. In this paper we present SPARTAN (Sparse Tangential Network) as an approach to create a sparsely connected graph across a tangential surface around obstacles. We find that SPARTAN can navigate a vehicle autonomously through an outdoor environment producing plans 172 times faster than the state of the art (RRT*). As a result SPARTAN can reliably deliver safe plans, with low latency, using the limited computational resources of a lightweight aerial vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representation of vehicle dynamics in haptic teleoperation of aerial robots Adaptive visual tracking with reacquisition ability for arbitrary objects A novel method to simplify supervisor for AMS based on Petri nets and inequality analysis Human-robot cooperative object swinging Gravity compensation control of compliant joint systems with multiple drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1