Michal Zygmunt, Marek Konieczny, Sławomir Zieliński
{"title":"统计机器学习方法在网络边缘识别客户行为模式中的准确性","authors":"Michal Zygmunt, Marek Konieczny, Sławomir Zieliński","doi":"10.1109/TSP.2019.8768885","DOIUrl":null,"url":null,"abstract":"This paper is focused on evaluating the applicability of statistical machine learning methods to identifying flows and user behavior patterns at the source (client) network edge. The research was conducted in a mid-size (covering ca 150 geographically scattered locations) network developed for the Malopolska Educational Cloud (MEC) project. Due to the lack of validation sets we focused on unsupervised learning methods. Modules implementing the methods were fed with the headers of the user-generated packets; payloads were not analyzed due to privacy concerns. The presented research proved that in client edge networks even the simple classification methods yield satisfactory results in flows classification.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accuracy of statistical machine learning methods in identifying client behavior patterns at network edge\",\"authors\":\"Michal Zygmunt, Marek Konieczny, Sławomir Zieliński\",\"doi\":\"10.1109/TSP.2019.8768885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on evaluating the applicability of statistical machine learning methods to identifying flows and user behavior patterns at the source (client) network edge. The research was conducted in a mid-size (covering ca 150 geographically scattered locations) network developed for the Malopolska Educational Cloud (MEC) project. Due to the lack of validation sets we focused on unsupervised learning methods. Modules implementing the methods were fed with the headers of the user-generated packets; payloads were not analyzed due to privacy concerns. The presented research proved that in client edge networks even the simple classification methods yield satisfactory results in flows classification.\",\"PeriodicalId\":399087,\"journal\":{\"name\":\"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2019.8768885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy of statistical machine learning methods in identifying client behavior patterns at network edge
This paper is focused on evaluating the applicability of statistical machine learning methods to identifying flows and user behavior patterns at the source (client) network edge. The research was conducted in a mid-size (covering ca 150 geographically scattered locations) network developed for the Malopolska Educational Cloud (MEC) project. Due to the lack of validation sets we focused on unsupervised learning methods. Modules implementing the methods were fed with the headers of the user-generated packets; payloads were not analyzed due to privacy concerns. The presented research proved that in client edge networks even the simple classification methods yield satisfactory results in flows classification.