基于应变的结构健康监测误差测量与机器学习方法的比较

Simon Pfingstl, O. Tusch, M. Zimmermann
{"title":"基于应变的结构健康监测误差测量与机器学习方法的比较","authors":"Simon Pfingstl, O. Tusch, M. Zimmermann","doi":"10.12783/shm2021/36289","DOIUrl":null,"url":null,"abstract":"The development of aircraft structures requires many fatigue tests. These tests are usually carried out to validate the corresponding finite element and damage models and to prove the expected damage-tolerant behavior. Monitoring aircraft structures requires experienced staff and is very time-consuming and expensive as the recurring inspection of the structure is a tedious task. We propose a machine learning-based approach that exploits continuous load and strain measurement data to support structural health monitoring and to shift the inspection program towards predictive maintenance. The machine learning model is used for mapping loads onto local strains. With the trained model, different error measures between current measurements and the predicted values are determined. When a specific threshold value based on an error confidence level is exceeded, an alarm is set off, and appropriate actions can be taken. The approach is applied to several fatigue tests with two different types of structures and damage mechanisms. Various error measures and models are compared. The paper shows that, first, simple error measures, such as the root mean squared error, are sufficient and even outperform more sophisticated error distances for detecting cracks with continuous strain measurements. Second, the standard deviation of strain or rather the load-strain slope is a key feature to detect cracks. And third, machine learning models enable structural health monitoring with sensors that even have only small strain values.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON OF ERROR MEASURES AND MACHINE LEARNING METHODS FOR STRAIN-BASED STRUCTURAL HEALTH MONITORING\",\"authors\":\"Simon Pfingstl, O. Tusch, M. Zimmermann\",\"doi\":\"10.12783/shm2021/36289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of aircraft structures requires many fatigue tests. These tests are usually carried out to validate the corresponding finite element and damage models and to prove the expected damage-tolerant behavior. Monitoring aircraft structures requires experienced staff and is very time-consuming and expensive as the recurring inspection of the structure is a tedious task. We propose a machine learning-based approach that exploits continuous load and strain measurement data to support structural health monitoring and to shift the inspection program towards predictive maintenance. The machine learning model is used for mapping loads onto local strains. With the trained model, different error measures between current measurements and the predicted values are determined. When a specific threshold value based on an error confidence level is exceeded, an alarm is set off, and appropriate actions can be taken. The approach is applied to several fatigue tests with two different types of structures and damage mechanisms. Various error measures and models are compared. The paper shows that, first, simple error measures, such as the root mean squared error, are sufficient and even outperform more sophisticated error distances for detecting cracks with continuous strain measurements. Second, the standard deviation of strain or rather the load-strain slope is a key feature to detect cracks. And third, machine learning models enable structural health monitoring with sensors that even have only small strain values.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞机结构的发展需要进行大量的疲劳试验。这些试验通常是为了验证相应的有限元和损伤模型,并证明预期的损伤容忍行为。监测飞机结构需要经验丰富的工作人员,并且非常耗时和昂贵,因为反复检查结构是一项繁琐的任务。我们提出了一种基于机器学习的方法,该方法利用连续载荷和应变测量数据来支持结构健康监测,并将检查程序转向预测性维护。机器学习模型用于将载荷映射到局部应变上。利用训练好的模型,确定当前测量值与预测值之间的不同误差测度。当超出基于错误置信水平的特定阈值时,将触发警报,并采取适当的操作。将该方法应用于两种不同类型结构和损伤机理的疲劳试验。对各种误差度量和模型进行了比较。本文表明,首先,简单的误差测量,如均方根误差,是足够的,甚至优于更复杂的误差距离检测裂纹与连续应变测量。其次,应变或荷载-应变斜率的标准差是检测裂缝的关键特征。第三,机器学习模型可以用传感器进行结构健康监测,即使只有很小的应变值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARISON OF ERROR MEASURES AND MACHINE LEARNING METHODS FOR STRAIN-BASED STRUCTURAL HEALTH MONITORING
The development of aircraft structures requires many fatigue tests. These tests are usually carried out to validate the corresponding finite element and damage models and to prove the expected damage-tolerant behavior. Monitoring aircraft structures requires experienced staff and is very time-consuming and expensive as the recurring inspection of the structure is a tedious task. We propose a machine learning-based approach that exploits continuous load and strain measurement data to support structural health monitoring and to shift the inspection program towards predictive maintenance. The machine learning model is used for mapping loads onto local strains. With the trained model, different error measures between current measurements and the predicted values are determined. When a specific threshold value based on an error confidence level is exceeded, an alarm is set off, and appropriate actions can be taken. The approach is applied to several fatigue tests with two different types of structures and damage mechanisms. Various error measures and models are compared. The paper shows that, first, simple error measures, such as the root mean squared error, are sufficient and even outperform more sophisticated error distances for detecting cracks with continuous strain measurements. Second, the standard deviation of strain or rather the load-strain slope is a key feature to detect cracks. And third, machine learning models enable structural health monitoring with sensors that even have only small strain values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1