纳米线与细胞和组织的相互作用

C. Prinz
{"title":"纳米线与细胞和组织的相互作用","authors":"C. Prinz","doi":"10.1109/IEDM.2017.8268463","DOIUrl":null,"url":null,"abstract":"III-V nanowires have tunable dimensions, between 40 nm and 100 nm in diameter and between 1 and 15 μm in length. Due to their small diameter, they are ideal candidates to interact with cells without detrimental effects on the cell viability. Nanowires can be used as sensors: in our case, we have shown that arrays of vertical gallium phosphide nanowires are promising materials for biosensing in membranes, neural implant development as well as for cellular mechanosensing. Moreover, due to the exceptional control one can achieve during synthesis over their geometrical and optical properties, III-V nanowires are ideal materials to investigate the interactions of high aspect ratio nanoparticles with living cells and tissue.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions of nanowires with cells and tissue\",\"authors\":\"C. Prinz\",\"doi\":\"10.1109/IEDM.2017.8268463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"III-V nanowires have tunable dimensions, between 40 nm and 100 nm in diameter and between 1 and 15 μm in length. Due to their small diameter, they are ideal candidates to interact with cells without detrimental effects on the cell viability. Nanowires can be used as sensors: in our case, we have shown that arrays of vertical gallium phosphide nanowires are promising materials for biosensing in membranes, neural implant development as well as for cellular mechanosensing. Moreover, due to the exceptional control one can achieve during synthesis over their geometrical and optical properties, III-V nanowires are ideal materials to investigate the interactions of high aspect ratio nanoparticles with living cells and tissue.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

III-V型纳米线的尺寸可调,直径在40纳米到100纳米之间,长度在1到15 μm之间。由于它们的直径小,它们是与细胞相互作用而不会对细胞活力产生有害影响的理想候选者。纳米线可以用作传感器:在我们的案例中,我们已经证明垂直磷化镓纳米线阵列是膜生物传感、神经植入物开发以及细胞机械传感的有前途的材料。此外,由于在合成过程中可以实现对其几何和光学特性的特殊控制,III-V纳米线是研究高纵横比纳米粒子与活细胞和组织相互作用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactions of nanowires with cells and tissue
III-V nanowires have tunable dimensions, between 40 nm and 100 nm in diameter and between 1 and 15 μm in length. Due to their small diameter, they are ideal candidates to interact with cells without detrimental effects on the cell viability. Nanowires can be used as sensors: in our case, we have shown that arrays of vertical gallium phosphide nanowires are promising materials for biosensing in membranes, neural implant development as well as for cellular mechanosensing. Moreover, due to the exceptional control one can achieve during synthesis over their geometrical and optical properties, III-V nanowires are ideal materials to investigate the interactions of high aspect ratio nanoparticles with living cells and tissue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel triboelectric nanogenerator with high performance and long duration time of sinusoidal current generation Lab on skin™: 3D monolithically integrated zero-energy micro/nanofludics and FD SOI ion sensitive FETs for wearable multi-sensing sweat applications NbO2 based threshold switch device with high operating temperature (>85°C) for steep-slope MOSFET (∼2mV/dec) with ultra-low voltage operation and improved delay time Time-dependent variability in RRAM-based analog neuromorphic system for pattern recognition Energy-efficient all fiber-based local body heat mapping circuitry combining thermistor and memristor for wearable healthcare device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1