{"title":"以人为中心的延迟推理:衡量用户交互并为人类-人工智能团队设置延迟标准","authors":"Stephan J. Lemmer, Anhong Guo, Jason J. Corso","doi":"10.1145/3581641.3584092","DOIUrl":null,"url":null,"abstract":"Although deep learning holds the promise of novel and impactful interfaces, realizing such promise in practice remains a challenge: since dataset-driven deep-learned models assume a one-time human input, there is no recourse when they do not understand the input provided by the user. Works that address this via deferred inference—soliciting additional human input when uncertain—show meaningful improvement, but ignore key aspects of how users and models interact. In this work, we focus on the role of users in deferred inference and argue that the deferral criteria should be a function of the user and model as a team, not simply the model itself. In support of this, we introduce a novel mathematical formulation, validate it via an experiment analyzing the interactions of 25 individuals with a deep learning-based visiolinguistic model, and identify user-specific dependencies that are under-explored in prior work. We conclude by demonstrating two human-centered procedures for setting deferral criteria that are simple to implement, applicable to a wide variety of tasks, and perform equal to or better than equivalent procedures that use much larger datasets.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Centered Deferred Inference: Measuring User Interactions and Setting Deferral Criteria for Human-AI Teams\",\"authors\":\"Stephan J. Lemmer, Anhong Guo, Jason J. Corso\",\"doi\":\"10.1145/3581641.3584092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although deep learning holds the promise of novel and impactful interfaces, realizing such promise in practice remains a challenge: since dataset-driven deep-learned models assume a one-time human input, there is no recourse when they do not understand the input provided by the user. Works that address this via deferred inference—soliciting additional human input when uncertain—show meaningful improvement, but ignore key aspects of how users and models interact. In this work, we focus on the role of users in deferred inference and argue that the deferral criteria should be a function of the user and model as a team, not simply the model itself. In support of this, we introduce a novel mathematical formulation, validate it via an experiment analyzing the interactions of 25 individuals with a deep learning-based visiolinguistic model, and identify user-specific dependencies that are under-explored in prior work. We conclude by demonstrating two human-centered procedures for setting deferral criteria that are simple to implement, applicable to a wide variety of tasks, and perform equal to or better than equivalent procedures that use much larger datasets.\",\"PeriodicalId\":118159,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581641.3584092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581641.3584092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human-Centered Deferred Inference: Measuring User Interactions and Setting Deferral Criteria for Human-AI Teams
Although deep learning holds the promise of novel and impactful interfaces, realizing such promise in practice remains a challenge: since dataset-driven deep-learned models assume a one-time human input, there is no recourse when they do not understand the input provided by the user. Works that address this via deferred inference—soliciting additional human input when uncertain—show meaningful improvement, but ignore key aspects of how users and models interact. In this work, we focus on the role of users in deferred inference and argue that the deferral criteria should be a function of the user and model as a team, not simply the model itself. In support of this, we introduce a novel mathematical formulation, validate it via an experiment analyzing the interactions of 25 individuals with a deep learning-based visiolinguistic model, and identify user-specific dependencies that are under-explored in prior work. We conclude by demonstrating two human-centered procedures for setting deferral criteria that are simple to implement, applicable to a wide variety of tasks, and perform equal to or better than equivalent procedures that use much larger datasets.