基于蚁群的大规模动态多智能体任务分配算法

F. Santos, A. Bazzan
{"title":"基于蚁群的大规模动态多智能体任务分配算法","authors":"F. Santos, A. Bazzan","doi":"10.1145/1569901.1569912","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of multiagent task allocation in extreme teams. An extreme team is composed by a large number of agents with overlapping functionality operating in dynamic environments with possible inter-task constraints. We present eXtreme-Ants, an approximate algorithm for task allocation in extreme teams. The algorithm is inspired by the division of labor in social insects and in the process of recruitment for cooperative transport observed in ant colonies. Division of labor offers fast and efficient decision-making, while the recruitment ensures the allocation of tasks that require simultaneous execution. We compare eXtreme-Ants with two other algorithms for task allocation in extreme teams and we show that it achieves balanced efficiency regarding quality of the solution, communication, and computational effort.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An ant based algorithm for task allocation in large-scale and dynamic multiagent scenarios\",\"authors\":\"F. Santos, A. Bazzan\",\"doi\":\"10.1145/1569901.1569912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of multiagent task allocation in extreme teams. An extreme team is composed by a large number of agents with overlapping functionality operating in dynamic environments with possible inter-task constraints. We present eXtreme-Ants, an approximate algorithm for task allocation in extreme teams. The algorithm is inspired by the division of labor in social insects and in the process of recruitment for cooperative transport observed in ant colonies. Division of labor offers fast and efficient decision-making, while the recruitment ensures the allocation of tasks that require simultaneous execution. We compare eXtreme-Ants with two other algorithms for task allocation in extreme teams and we show that it achieves balanced efficiency regarding quality of the solution, communication, and computational effort.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究了极端团队中的多智能体任务分配问题。极端团队由大量具有重叠功能的代理组成,这些代理在可能存在任务间约束的动态环境中工作。我们提出了一种用于极端团队任务分配的近似算法“极端蚂蚁”。该算法的灵感来自于群居昆虫的劳动分工和蚁群中合作运输的招募过程。分工提供了快速有效的决策,而招聘确保了需要同时执行的任务的分配。我们比较了极端蚂蚁和其他两种算法在极端团队中的任务分配,我们表明它在解决方案的质量、通信和计算工作量方面达到了平衡的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ant based algorithm for task allocation in large-scale and dynamic multiagent scenarios
This paper addresses the problem of multiagent task allocation in extreme teams. An extreme team is composed by a large number of agents with overlapping functionality operating in dynamic environments with possible inter-task constraints. We present eXtreme-Ants, an approximate algorithm for task allocation in extreme teams. The algorithm is inspired by the division of labor in social insects and in the process of recruitment for cooperative transport observed in ant colonies. Division of labor offers fast and efficient decision-making, while the recruitment ensures the allocation of tasks that require simultaneous execution. We compare eXtreme-Ants with two other algorithms for task allocation in extreme teams and we show that it achieves balanced efficiency regarding quality of the solution, communication, and computational effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1