使用元素和文档配置文件进行信息聚类

J. Lai, B. Soh
{"title":"使用元素和文档配置文件进行信息聚类","authors":"J. Lai, B. Soh","doi":"10.1109/EEE.2004.1287354","DOIUrl":null,"url":null,"abstract":"The tremendous growth in the amount of information available and the number of visitors to Web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold are clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.","PeriodicalId":360167,"journal":{"name":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using element and document profile for information clustering\",\"authors\":\"J. Lai, B. Soh\",\"doi\":\"10.1109/EEE.2004.1287354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tremendous growth in the amount of information available and the number of visitors to Web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold are clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.\",\"PeriodicalId\":360167,\"journal\":{\"name\":\"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEE.2004.1287354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEE.2004.1287354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,可获得的信息量和访问Web站点的人数的巨大增长对信息过滤和检索提出了一些关键的挑战。网络访问者不仅希望获得高质量和相关的信息,而且希望信息以尽可能高效的方式呈现。传统的过滤方法只考虑文档的相关值。这些传统的方法没有考虑到文档检索的效率。在本文中,我们提出了一种基于文档元素计算文档相似度分数的新算法。使用索引,将派生文档概要文件。任何相似度得分高于给定阈值的文档都被聚类。使用这些预聚类文档,可以提高信息过滤和检索的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using element and document profile for information clustering
The tremendous growth in the amount of information available and the number of visitors to Web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold are clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the distributed management of SCORM-compliant course contents A new fair micropayment system based on hash chain An enhanced EDCG replica allocation method in ad hoc networks Using element and document profile for information clustering A scheme for MAC isolation to realize effective management in public wireless LAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1