基于高阶奇异值分解的加载系统控制模型

G. Orban, A. Rovid, P. Várlaki
{"title":"基于高阶奇异值分解的加载系统控制模型","authors":"G. Orban, A. Rovid, P. Várlaki","doi":"10.1109/CSAE.2011.5952783","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for constructing a control model of loading systems based on higher order singular decomposition (HOSVD) of a tensor. Modern logistics need control systems that are able to develop and improve the material and information flow by automating the control processes. We propose the application of linear parameter varying (LPV) structure by which non-linear systems can be controlled on the basis of linear control theories. Describing the system, modeling logistic processes require many uncertain input parameters. Using the proposed method the complexity of the model can be kept on a lower level.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Control model for loading systems using higher order singular value decomposition\",\"authors\":\"G. Orban, A. Rovid, P. Várlaki\",\"doi\":\"10.1109/CSAE.2011.5952783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method for constructing a control model of loading systems based on higher order singular decomposition (HOSVD) of a tensor. Modern logistics need control systems that are able to develop and improve the material and information flow by automating the control processes. We propose the application of linear parameter varying (LPV) structure by which non-linear systems can be controlled on the basis of linear control theories. Describing the system, modeling logistic processes require many uncertain input parameters. Using the proposed method the complexity of the model can be kept on a lower level.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于张量的高阶奇异分解(HOSVD)构造加载系统控制模型的方法。现代物流需要能够通过自动化控制过程来发展和改善物料和信息流的控制系统。在线性控制理论的基础上,提出了线性变参数结构(LPV)在非线性系统控制中的应用。描述系统,建模逻辑过程需要许多不确定的输入参数。使用该方法可以将模型的复杂性保持在较低的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control model for loading systems using higher order singular value decomposition
In this paper we present a method for constructing a control model of loading systems based on higher order singular decomposition (HOSVD) of a tensor. Modern logistics need control systems that are able to develop and improve the material and information flow by automating the control processes. We propose the application of linear parameter varying (LPV) structure by which non-linear systems can be controlled on the basis of linear control theories. Describing the system, modeling logistic processes require many uncertain input parameters. Using the proposed method the complexity of the model can be kept on a lower level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1