{"title":"三维光子晶体及其应用","authors":"S. Noda","doi":"10.1109/CLEOPR.1999.811366","DOIUrl":null,"url":null,"abstract":"We report our new approach to develop the complete three-dimensional photonic crystal and the future prospects. Our photonic crystal is constructed with GaAs (or InP) stripes stacked by a wafer-fusion technique to form an asymmetric face-centered cubic (A-FCC) structure. The stacked four layers correspond to the one-period of the A-FCC structure. The band structure has a complete photonic band gap for all wave vectors. Moreover, since the crystal is constructed with a III-V semiconductor, which is widely utilized for optoelectronic devices, by the wafer-bonding technique it is possible to introduce arbitrary defect states and light-emitters and to form an electronically active interface. Thus, once the 3D photonic crystal is realized, it will open a door for various applications including an active quantum device such as zero-threshold laser.","PeriodicalId":408728,"journal":{"name":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional photonic crystals and their applications\",\"authors\":\"S. Noda\",\"doi\":\"10.1109/CLEOPR.1999.811366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report our new approach to develop the complete three-dimensional photonic crystal and the future prospects. Our photonic crystal is constructed with GaAs (or InP) stripes stacked by a wafer-fusion technique to form an asymmetric face-centered cubic (A-FCC) structure. The stacked four layers correspond to the one-period of the A-FCC structure. The band structure has a complete photonic band gap for all wave vectors. Moreover, since the crystal is constructed with a III-V semiconductor, which is widely utilized for optoelectronic devices, by the wafer-bonding technique it is possible to introduce arbitrary defect states and light-emitters and to form an electronically active interface. Thus, once the 3D photonic crystal is realized, it will open a door for various applications including an active quantum device such as zero-threshold laser.\",\"PeriodicalId\":408728,\"journal\":{\"name\":\"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOPR.1999.811366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOPR.1999.811366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional photonic crystals and their applications
We report our new approach to develop the complete three-dimensional photonic crystal and the future prospects. Our photonic crystal is constructed with GaAs (or InP) stripes stacked by a wafer-fusion technique to form an asymmetric face-centered cubic (A-FCC) structure. The stacked four layers correspond to the one-period of the A-FCC structure. The band structure has a complete photonic band gap for all wave vectors. Moreover, since the crystal is constructed with a III-V semiconductor, which is widely utilized for optoelectronic devices, by the wafer-bonding technique it is possible to introduce arbitrary defect states and light-emitters and to form an electronically active interface. Thus, once the 3D photonic crystal is realized, it will open a door for various applications including an active quantum device such as zero-threshold laser.