基于DEM的双轴试验中砂土力学特性宏观和微观非均质性评价

M. Negi, M. Mukherjee
{"title":"基于DEM的双轴试验中砂土力学特性宏观和微观非均质性评价","authors":"M. Negi, M. Mukherjee","doi":"10.23967/wccm-apcom.2022.021","DOIUrl":null,"url":null,"abstract":". While characterizing the mechanical behavior of granular assemblies through DEM simulations, various macro and micro level heterogeneities are often encountered. Such macro level heterogeneities may arise due to stress and void concentration near the wall boundaries; whereas, the micro level heterogeneities are attributed to consideration of only limited number of particles within the representative volume element (RVE). The present study assesses these macro and micro level heterogeneities in reference to the mechanical characterization of sand in DEM-based biaxial test simulation with both rigid and flexible lateral boundaries. In this regard, stresses and strains have been calculated using a wall-based global estimation and a representative area element (RAE)-based local estimation. It has been suggested that the RAE should occupy a maximum of 90% area of the specimen in order to avoid any macro level heterogeneity and can still be able to capture its overall mechanical behavior. For obtaining the spatial variation of field variables, RAE of smaller diameters are often employed. In such cases, depending on the average particle size of the granular assembly and the specimen dimensions, the diameter of the RAE should be selected ensuring that it is small enough to aptly capture the local variation of field variables and at the same time, large enough to avoid any micro level heterogeneity.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of Macro and Micro level Heterogeneities for Characterizing Mechanical Behavior of Sand in Biaxial Test employing DEM\",\"authors\":\"M. Negi, M. Mukherjee\",\"doi\":\"10.23967/wccm-apcom.2022.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". While characterizing the mechanical behavior of granular assemblies through DEM simulations, various macro and micro level heterogeneities are often encountered. Such macro level heterogeneities may arise due to stress and void concentration near the wall boundaries; whereas, the micro level heterogeneities are attributed to consideration of only limited number of particles within the representative volume element (RVE). The present study assesses these macro and micro level heterogeneities in reference to the mechanical characterization of sand in DEM-based biaxial test simulation with both rigid and flexible lateral boundaries. In this regard, stresses and strains have been calculated using a wall-based global estimation and a representative area element (RAE)-based local estimation. It has been suggested that the RAE should occupy a maximum of 90% area of the specimen in order to avoid any macro level heterogeneity and can still be able to capture its overall mechanical behavior. For obtaining the spatial variation of field variables, RAE of smaller diameters are often employed. In such cases, depending on the average particle size of the granular assembly and the specimen dimensions, the diameter of the RAE should be selected ensuring that it is small enough to aptly capture the local variation of field variables and at the same time, large enough to avoid any micro level heterogeneity.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

。在通过DEM模拟来表征颗粒组件的力学行为时,经常会遇到各种宏观和微观层面的非均质性。这种宏观层面的非均质性可能是由于壁面边界附近的应力和空隙集中造成的;然而,微观层面的非均质性归因于仅考虑代表性体积元(RVE)内有限数量的颗粒。本研究根据基于dem的具有刚性和柔性横向边界的双轴试验模拟,评估了这些宏观和微观水平的非均质性。在这方面,应力和应变的计算使用基于墙的全局估计和基于代表性面积单元(RAE)的局部估计。为了避免宏观层面的非均质性,RAE应最大占试样面积的90%,并且仍然能够捕捉其整体力学行为。为了获得场变量的空间变化,通常采用较小直径的RAE。在这种情况下,根据颗粒组合的平均粒径和试样尺寸,RAE的直径选择应确保足够小,以适当地捕捉场变量的局部变化,同时足够大,以避免任何微观层面的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Macro and Micro level Heterogeneities for Characterizing Mechanical Behavior of Sand in Biaxial Test employing DEM
. While characterizing the mechanical behavior of granular assemblies through DEM simulations, various macro and micro level heterogeneities are often encountered. Such macro level heterogeneities may arise due to stress and void concentration near the wall boundaries; whereas, the micro level heterogeneities are attributed to consideration of only limited number of particles within the representative volume element (RVE). The present study assesses these macro and micro level heterogeneities in reference to the mechanical characterization of sand in DEM-based biaxial test simulation with both rigid and flexible lateral boundaries. In this regard, stresses and strains have been calculated using a wall-based global estimation and a representative area element (RAE)-based local estimation. It has been suggested that the RAE should occupy a maximum of 90% area of the specimen in order to avoid any macro level heterogeneity and can still be able to capture its overall mechanical behavior. For obtaining the spatial variation of field variables, RAE of smaller diameters are often employed. In such cases, depending on the average particle size of the granular assembly and the specimen dimensions, the diameter of the RAE should be selected ensuring that it is small enough to aptly capture the local variation of field variables and at the same time, large enough to avoid any micro level heterogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1