一种具有相关反馈的图像检索方法

Ke Chen, Zhiyong Xiong, X. Xian, Fusheng Yu
{"title":"一种具有相关反馈的图像检索方法","authors":"Ke Chen, Zhiyong Xiong, X. Xian, Fusheng Yu","doi":"10.1109/CSAE.2011.5952938","DOIUrl":null,"url":null,"abstract":"An image retrieval approach combined with relevance feedback is proposed. A set of blobs that are generated from image features using clustering can be used to describe an image. Given a training set of images with annotations, we apply probabilistic models to predict the probability of a blob in image according to the query words. For improving the initial query results, we apply a relevance feedback mechanism to bridge the semantic gap, leading to the improved image retrieval accuracy. A support vector machine classifier can be learned from training data of relevance images and irrelevance images labeled by users. Experimental results show that the proposed approach obtains higher retrieval accuracy than a commonly used approach.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An image retrieval approach with relevance feedback\",\"authors\":\"Ke Chen, Zhiyong Xiong, X. Xian, Fusheng Yu\",\"doi\":\"10.1109/CSAE.2011.5952938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An image retrieval approach combined with relevance feedback is proposed. A set of blobs that are generated from image features using clustering can be used to describe an image. Given a training set of images with annotations, we apply probabilistic models to predict the probability of a blob in image according to the query words. For improving the initial query results, we apply a relevance feedback mechanism to bridge the semantic gap, leading to the improved image retrieval accuracy. A support vector machine classifier can be learned from training data of relevance images and irrelevance images labeled by users. Experimental results show that the proposed approach obtains higher retrieval accuracy than a commonly used approach.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种结合相关反馈的图像检索方法。使用聚类从图像特征生成的一组blob可以用来描述图像。给定一个带有注释的图像训练集,我们根据查询词应用概率模型来预测图像中斑点的概率。为了改善初始查询结果,我们采用了相关反馈机制来弥补语义差距,从而提高了图像检索的准确性。支持向量机分类器可以从用户标记的相关图像和不相关图像的训练数据中学习。实验结果表明,该方法比常用方法具有更高的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An image retrieval approach with relevance feedback
An image retrieval approach combined with relevance feedback is proposed. A set of blobs that are generated from image features using clustering can be used to describe an image. Given a training set of images with annotations, we apply probabilistic models to predict the probability of a blob in image according to the query words. For improving the initial query results, we apply a relevance feedback mechanism to bridge the semantic gap, leading to the improved image retrieval accuracy. A support vector machine classifier can be learned from training data of relevance images and irrelevance images labeled by users. Experimental results show that the proposed approach obtains higher retrieval accuracy than a commonly used approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1