基于切菜板负荷的烹饪配料识别

Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh
{"title":"基于切菜板负荷的烹饪配料识别","authors":"Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh","doi":"10.1109/ISM.2011.69","DOIUrl":null,"url":null,"abstract":"This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cooking Ingredient Recognition Based on the Load on a Chopping Board during Cutting\",\"authors\":\"Yoko Yamakata, Yoshiki Tsuchimoto, Atsushi Hashimoto, Takuya Funatomi, Mayumi Ueda, M. Minoh\",\"doi\":\"10.1109/ISM.2011.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于切菜板上的载荷来识别菜谱配料的方法。负载由连接在电路板上的四个传感器测量。通过识别负载数据中的急剧下降沿来检测每个斩波。提取负载特征,包括最大值、持续时间、脉冲、峰位置和峰度,并用于成分识别。实验结果表明,支持向量机(SVM)分类器对16种常见成分的切痕检测准确率为98.1%,成分识别准确率为67.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooking Ingredient Recognition Based on the Load on a Chopping Board during Cutting
This paper presents a method for recognizing recipe ingredients based on the load on a chopping board when ingredients are cut. The load is measured by four sensors attached to the board. Each chop is detected by indentifying a sharp falling edge in the load data. The load features, including the maximum value, duration, impulse, peak position, and kurtosis, are extracted and used for ingredient recognition. Experimental results showed a precision of 98.1% in chop detection and 67.4% in ingredient recognition with a support vector machine (SVM) classifier for 16 common ingredients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Subjective Evaluation of 3D Iptv Broadcasting Implementations Considering Coding and Transmission Degradation A Low Memory Requirements Execution Flow for the Non-Uniform Grid Projection Super-Resolution Algorithm 3D Image Browsing on Mobile Devices Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Automatic Bird Species Identification for Large Number of Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1