并行缩短空间注意模块用于有效和精确的车道检测

Li-Yang Ho, Wei-Jong Yang
{"title":"并行缩短空间注意模块用于有效和精确的车道检测","authors":"Li-Yang Ho, Wei-Jong Yang","doi":"10.1109/IS3C57901.2023.00096","DOIUrl":null,"url":null,"abstract":"With the development of computer vision, more and more systems for autonomous driving are adopting deep learning technology. Among them, lane detection aims to avoid accidents caused by the cars that deviate from their driving lanes. The lane detection task is challenging due to complex scenes and few features of distorted lane lines. Therefore, collecting the useful spatial information of the feature map related lane line becomes an important task for lane line detection. There are some spatial enhancements in feature maps, such as the spatial convolutional neural network (SCNN) [1] and the parallel spatial attention network (PSAN) [2]. To avoid computation in computing spatial attentions from top-to-bottom, left-to-right, bottom-to-top and right-to-left processes., in this paper, we design a more efficient detection system based on the PSAN concept, we shortened the spatial attention ranges, where the module only collects spatial local information and passes to the adjacent feature to reduce the computation time and enhance the lane detection performances. Simulation results show that the proposed parallel shortened spatial attention module can achieve effective and precision lane detection.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Shortened Spatial Attention Module for Effective and Precision Lane Detection\",\"authors\":\"Li-Yang Ho, Wei-Jong Yang\",\"doi\":\"10.1109/IS3C57901.2023.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of computer vision, more and more systems for autonomous driving are adopting deep learning technology. Among them, lane detection aims to avoid accidents caused by the cars that deviate from their driving lanes. The lane detection task is challenging due to complex scenes and few features of distorted lane lines. Therefore, collecting the useful spatial information of the feature map related lane line becomes an important task for lane line detection. There are some spatial enhancements in feature maps, such as the spatial convolutional neural network (SCNN) [1] and the parallel spatial attention network (PSAN) [2]. To avoid computation in computing spatial attentions from top-to-bottom, left-to-right, bottom-to-top and right-to-left processes., in this paper, we design a more efficient detection system based on the PSAN concept, we shortened the spatial attention ranges, where the module only collects spatial local information and passes to the adjacent feature to reduce the computation time and enhance the lane detection performances. Simulation results show that the proposed parallel shortened spatial attention module can achieve effective and precision lane detection.\",\"PeriodicalId\":142483,\"journal\":{\"name\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS3C57901.2023.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着计算机视觉技术的发展,越来越多的自动驾驶系统采用深度学习技术。其中,车道检测的目的是为了避免车辆偏离车道造成的事故。由于场景复杂,且扭曲车道线特征较少,车道检测任务具有挑战性。因此,收集特征图中相关车道线的有用空间信息成为车道线检测的重要任务。在特征图中有一些空间增强,如空间卷积神经网络(SCNN)[1]和并行空间注意网络(PSAN)[2]。为了避免计算从上到下、从左到右、从下到上和从右到左进程的空间注意力。在本文中,我们设计了一个基于PSAN概念的更高效的检测系统,我们缩短了空间关注范围,其中模块只收集空间局部信息并传递给相邻特征,以减少计算时间,提高车道检测性能。仿真结果表明,所提出的平行缩短空间注意模块能够实现有效、精确的车道检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Shortened Spatial Attention Module for Effective and Precision Lane Detection
With the development of computer vision, more and more systems for autonomous driving are adopting deep learning technology. Among them, lane detection aims to avoid accidents caused by the cars that deviate from their driving lanes. The lane detection task is challenging due to complex scenes and few features of distorted lane lines. Therefore, collecting the useful spatial information of the feature map related lane line becomes an important task for lane line detection. There are some spatial enhancements in feature maps, such as the spatial convolutional neural network (SCNN) [1] and the parallel spatial attention network (PSAN) [2]. To avoid computation in computing spatial attentions from top-to-bottom, left-to-right, bottom-to-top and right-to-left processes., in this paper, we design a more efficient detection system based on the PSAN concept, we shortened the spatial attention ranges, where the module only collects spatial local information and passes to the adjacent feature to reduce the computation time and enhance the lane detection performances. Simulation results show that the proposed parallel shortened spatial attention module can achieve effective and precision lane detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1