光伏发电机组能量参数MPPT控制的可靠性研究

Batassou Guilzia Jeannot, Mandeng Jean Jacques, Mane Mane Jeannot
{"title":"光伏发电机组能量参数MPPT控制的可靠性研究","authors":"Batassou Guilzia Jeannot, Mandeng Jean Jacques, Mane Mane Jeannot","doi":"10.4236/wjet.2020.83038","DOIUrl":null,"url":null,"abstract":"This article describes a technique that allows a photovoltaic (PV) production unit to obtain the maximum power at all times. Here, we use the MPPT control via fuzzy logic on a DC/DC boost-type converter. In order to achieve our goals, we first proceeded to model a PV panel. The resulting model offers the possibility to better account for the influence of different physical quantities such as temperature, irradiation, series resistance, shunt resistance and diode saturation current. Thus, the maximum power to be provided by the PV system is acquired by fuzzification and defuzzification of the input and output variables of the converter. Subsequently, a virtual model of an 800 Watt PV prototype is implemented in the Matlab environment. The simulation results obtained and presented, show the feasibility and efficiency of the proposed technology. Indeed, for a disturbance caused by a variation in brightness, our system guarantees the maximum stable power after 1.4 s. While for a load variation, the maximum power is continuous.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability of the MPPT Control on the Energy Parameters of a Photovoltaic Generator\",\"authors\":\"Batassou Guilzia Jeannot, Mandeng Jean Jacques, Mane Mane Jeannot\",\"doi\":\"10.4236/wjet.2020.83038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a technique that allows a photovoltaic (PV) production unit to obtain the maximum power at all times. Here, we use the MPPT control via fuzzy logic on a DC/DC boost-type converter. In order to achieve our goals, we first proceeded to model a PV panel. The resulting model offers the possibility to better account for the influence of different physical quantities such as temperature, irradiation, series resistance, shunt resistance and diode saturation current. Thus, the maximum power to be provided by the PV system is acquired by fuzzification and defuzzification of the input and output variables of the converter. Subsequently, a virtual model of an 800 Watt PV prototype is implemented in the Matlab environment. The simulation results obtained and presented, show the feasibility and efficiency of the proposed technology. Indeed, for a disturbance caused by a variation in brightness, our system guarantees the maximum stable power after 1.4 s. While for a load variation, the maximum power is continuous.\",\"PeriodicalId\":344331,\"journal\":{\"name\":\"World Journal of Engineering and Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjet.2020.83038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjet.2020.83038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种使光伏(PV)生产单元在任何时候都能获得最大功率的技术。在这里,我们通过模糊逻辑在DC/DC升压型转换器上使用MPPT控制。为了实现我们的目标,我们首先着手建立一个光伏面板的模型。所得模型提供了更好地考虑不同物理量(如温度、辐照、串联电阻、并联电阻和二极管饱和电流)影响的可能性。因此,通过对变流器的输入和输出变量进行模糊化和去模糊化,获得光伏系统所能提供的最大功率。随后,在Matlab环境下实现了800瓦光伏样机的虚拟模型。仿真结果表明了该技术的可行性和有效性。事实上,对于亮度变化引起的干扰,我们的系统保证在1.4 s后的最大稳定功率。而对于负载变化,最大功率是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of the MPPT Control on the Energy Parameters of a Photovoltaic Generator
This article describes a technique that allows a photovoltaic (PV) production unit to obtain the maximum power at all times. Here, we use the MPPT control via fuzzy logic on a DC/DC boost-type converter. In order to achieve our goals, we first proceeded to model a PV panel. The resulting model offers the possibility to better account for the influence of different physical quantities such as temperature, irradiation, series resistance, shunt resistance and diode saturation current. Thus, the maximum power to be provided by the PV system is acquired by fuzzification and defuzzification of the input and output variables of the converter. Subsequently, a virtual model of an 800 Watt PV prototype is implemented in the Matlab environment. The simulation results obtained and presented, show the feasibility and efficiency of the proposed technology. Indeed, for a disturbance caused by a variation in brightness, our system guarantees the maximum stable power after 1.4 s. While for a load variation, the maximum power is continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Influencing Factors of Reservoir Construction Risk Based on Interpretative Structural Modeling Preliminary Exploration on the Application of Saussure Sign Concept in Bio-Inspired Design: A Case of Tiantoushui Doll-Design Comparative Analysis of Hybrid Controllers of Done Systems (UPFC) and Interphase Power Regulators Type RPI 30p15 on Contingency Management in Electrical Networks Bureaucratic Factors Impeding the Delivery of Infrastructure at the Metropolitan Municipal and District Assemblies (MMDAs) in Ghana Summary of Application of Fuzzy Mathematics in Construction Project Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1