Youngsun Wi, Andy Zeng, Peter R. Florence, Nima Fazeli
{"title":"VIRDO++:真实世界,视觉触觉动力学和可变形物体的感知","authors":"Youngsun Wi, Andy Zeng, Peter R. Florence, Nima Fazeli","doi":"10.48550/arXiv.2210.03701","DOIUrl":null,"url":null,"abstract":"Deformable objects manipulation can benefit from representations that seamlessly integrate vision and touch while handling occlusions. In this work, we present a novel approach for, and real-world demonstration of, multimodal visuo-tactile state-estimation and dynamics prediction for deformable objects. Our approach, VIRDO++, builds on recent progress in multimodal neural implicit representations for deformable object state-estimation [1] via a new formulation for deformation dynamics and a complementary state-estimation algorithm that (i) maintains a belief over deformations, and (ii) enables practical real-world application by removing the need for privileged contact information. In the context of two real-world robotic tasks, we show:(i) high-fidelity cross-modal state-estimation and prediction of deformable objects from partial visuo-tactile feedback, and (ii) generalization to unseen objects and contact formations.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"VIRDO++: Real-World, Visuo-tactile Dynamics and Perception of Deformable Objects\",\"authors\":\"Youngsun Wi, Andy Zeng, Peter R. Florence, Nima Fazeli\",\"doi\":\"10.48550/arXiv.2210.03701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformable objects manipulation can benefit from representations that seamlessly integrate vision and touch while handling occlusions. In this work, we present a novel approach for, and real-world demonstration of, multimodal visuo-tactile state-estimation and dynamics prediction for deformable objects. Our approach, VIRDO++, builds on recent progress in multimodal neural implicit representations for deformable object state-estimation [1] via a new formulation for deformation dynamics and a complementary state-estimation algorithm that (i) maintains a belief over deformations, and (ii) enables practical real-world application by removing the need for privileged contact information. In the context of two real-world robotic tasks, we show:(i) high-fidelity cross-modal state-estimation and prediction of deformable objects from partial visuo-tactile feedback, and (ii) generalization to unseen objects and contact formations.\",\"PeriodicalId\":273870,\"journal\":{\"name\":\"Conference on Robot Learning\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Robot Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.03701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.03701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VIRDO++: Real-World, Visuo-tactile Dynamics and Perception of Deformable Objects
Deformable objects manipulation can benefit from representations that seamlessly integrate vision and touch while handling occlusions. In this work, we present a novel approach for, and real-world demonstration of, multimodal visuo-tactile state-estimation and dynamics prediction for deformable objects. Our approach, VIRDO++, builds on recent progress in multimodal neural implicit representations for deformable object state-estimation [1] via a new formulation for deformation dynamics and a complementary state-estimation algorithm that (i) maintains a belief over deformations, and (ii) enables practical real-world application by removing the need for privileged contact information. In the context of two real-world robotic tasks, we show:(i) high-fidelity cross-modal state-estimation and prediction of deformable objects from partial visuo-tactile feedback, and (ii) generalization to unseen objects and contact formations.