全双工正交频分复用系统中的相位噪声估计

F. Tseng, Tsang-Yi Wang, Chun-Tao Lin, Chun-Cheng Su
{"title":"全双工正交频分复用系统中的相位噪声估计","authors":"F. Tseng, Tsang-Yi Wang, Chun-Tao Lin, Chun-Cheng Su","doi":"10.1109/ICUFN57995.2023.10200804","DOIUrl":null,"url":null,"abstract":"The paper studies the estimation of phase noise (PHN) in a full-duplex (FD) orthogonal frequency division multiplexing (OFDM) system. Unlike the conventional half-duplex OFDM system, the receiver faces the challenge of estimating the PHN of the intended signals and self-interference (SI). To address this issue, the PHN estimation problem is transformed into a sparse signal detection problem, which can be solved using compressive sensing techniques. However, the performance of these techniques is limited by linear approximation, improper prior information, or improper structure of the sensing matrix. To overcome these limitations, the extended Kalman filter (EKF) is introduced for PHN estimation. The EKF utilizes the maximum a posteriori probability (MAP) criterion with an approximated linear observation model. Furthermore, a novel MAP estimator is developed that employs the original nonlinear observations. Numerical results validate the effectiveness of the proposed estimators and demonstrate that the proposed MAP estimator outperforms existing compressive sensing approaches due to the utilization of accurate posterior distribution.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phase Noise Estimation in Full-Duplex Orthogonal Frequency Division Multiplexing Systems\",\"authors\":\"F. Tseng, Tsang-Yi Wang, Chun-Tao Lin, Chun-Cheng Su\",\"doi\":\"10.1109/ICUFN57995.2023.10200804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies the estimation of phase noise (PHN) in a full-duplex (FD) orthogonal frequency division multiplexing (OFDM) system. Unlike the conventional half-duplex OFDM system, the receiver faces the challenge of estimating the PHN of the intended signals and self-interference (SI). To address this issue, the PHN estimation problem is transformed into a sparse signal detection problem, which can be solved using compressive sensing techniques. However, the performance of these techniques is limited by linear approximation, improper prior information, or improper structure of the sensing matrix. To overcome these limitations, the extended Kalman filter (EKF) is introduced for PHN estimation. The EKF utilizes the maximum a posteriori probability (MAP) criterion with an approximated linear observation model. Furthermore, a novel MAP estimator is developed that employs the original nonlinear observations. Numerical results validate the effectiveness of the proposed estimators and demonstrate that the proposed MAP estimator outperforms existing compressive sensing approaches due to the utilization of accurate posterior distribution.\",\"PeriodicalId\":341881,\"journal\":{\"name\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN57995.2023.10200804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了全双工(FD)正交频分复用(OFDM)系统中相位噪声的估计问题。与传统的半双工OFDM系统不同,接收机面临着估计预期信号的PHN和自干扰(SI)的挑战。为了解决这一问题,将PHN估计问题转化为稀疏信号检测问题,并利用压缩感知技术解决该问题。然而,这些技术的性能受到线性逼近、不适当的先验信息或不适当的传感矩阵结构的限制。为了克服这些局限性,引入扩展卡尔曼滤波(EKF)进行PHN估计。EKF利用最大后验概率(MAP)准则和近似的线性观测模型。在此基础上,提出了一种利用原始非线性观测值的MAP估计方法。数值结果验证了所提估计器的有效性,并表明所提MAP估计器由于利用了精确的后验分布而优于现有的压缩感知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase Noise Estimation in Full-Duplex Orthogonal Frequency Division Multiplexing Systems
The paper studies the estimation of phase noise (PHN) in a full-duplex (FD) orthogonal frequency division multiplexing (OFDM) system. Unlike the conventional half-duplex OFDM system, the receiver faces the challenge of estimating the PHN of the intended signals and self-interference (SI). To address this issue, the PHN estimation problem is transformed into a sparse signal detection problem, which can be solved using compressive sensing techniques. However, the performance of these techniques is limited by linear approximation, improper prior information, or improper structure of the sensing matrix. To overcome these limitations, the extended Kalman filter (EKF) is introduced for PHN estimation. The EKF utilizes the maximum a posteriori probability (MAP) criterion with an approximated linear observation model. Furthermore, a novel MAP estimator is developed that employs the original nonlinear observations. Numerical results validate the effectiveness of the proposed estimators and demonstrate that the proposed MAP estimator outperforms existing compressive sensing approaches due to the utilization of accurate posterior distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Search of Distance Functions That Improve Autoencoder Performance for Intrusion Detection DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence Bimodal Speech Emotion Recognition using Fused Intra and Cross Modality Features A Study on Latency Prediction in 5G network Broadcasting in chains of rings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1