一种改进的基于图割的复杂背景彩色图像分割算法

Hanyu Hong, Xiangyun Guo, Xiuhua Zhang
{"title":"一种改进的基于图割的复杂背景彩色图像分割算法","authors":"Hanyu Hong, Xiangyun Guo, Xiuhua Zhang","doi":"10.1109/CSAE.2011.5952551","DOIUrl":null,"url":null,"abstract":"Recently, it is still difficult to extract interested object from complex background. In this field, interactive image segmentation method has attracted much attention in the vision. In this paper, we propose a new algorithm to segment the interested object from complex background. In the algorithm, we use the improved K-means clustering in the LUV color space to get more accurate classifications of the labeled pixels. Then, build up energy function model and calculate the energy of segmentation properly. Finally, we get the perfect result through graph cuts and denoising algorithm based on connected components.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An improved segmentation algorithm of color image in complex background based on graph cuts\",\"authors\":\"Hanyu Hong, Xiangyun Guo, Xiuhua Zhang\",\"doi\":\"10.1109/CSAE.2011.5952551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, it is still difficult to extract interested object from complex background. In this field, interactive image segmentation method has attracted much attention in the vision. In this paper, we propose a new algorithm to segment the interested object from complex background. In the algorithm, we use the improved K-means clustering in the LUV color space to get more accurate classifications of the labeled pixels. Then, build up energy function model and calculate the energy of segmentation properly. Finally, we get the perfect result through graph cuts and denoising algorithm based on connected components.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,从复杂的背景中提取感兴趣的目标仍然很困难。在这一领域中,交互式图像分割方法在视觉上受到了广泛的关注。本文提出了一种从复杂背景中分割感兴趣目标的新算法。在该算法中,我们在LUV颜色空间中使用改进的K-means聚类来获得更准确的标记像素分类。然后,建立能量函数模型,合理计算分割能量;最后,通过图割和基于连通分量的去噪算法得到了理想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved segmentation algorithm of color image in complex background based on graph cuts
Recently, it is still difficult to extract interested object from complex background. In this field, interactive image segmentation method has attracted much attention in the vision. In this paper, we propose a new algorithm to segment the interested object from complex background. In the algorithm, we use the improved K-means clustering in the LUV color space to get more accurate classifications of the labeled pixels. Then, build up energy function model and calculate the energy of segmentation properly. Finally, we get the perfect result through graph cuts and denoising algorithm based on connected components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1