Keisuke Kono, Tomoyuki Nitta, Kazuaki Ishikawa, M. Yanagisawa, N. Togawa
{"title":"基于地标划分的腕表型可穿戴设备综合变形地图生成","authors":"Keisuke Kono, Tomoyuki Nitta, Kazuaki Ishikawa, M. Yanagisawa, N. Togawa","doi":"10.1109/GCCE.2016.7800432","DOIUrl":null,"url":null,"abstract":"Recently, wristwatch-type wearable devices are developed and geographic information services have become widely available on them. In this paper, we propose a comprehensive deformed map generation algorithm for wristwatch-type wearable devices. Our algorithm first normalizes a pedestrian route to 0°, 45°, or 90° so that the pedestrian can see the route not tilting the wristwatch-type wearable device on his/her wrist. Second, our algorithm partitions the normalized map so that several landmarks are overlapped in the partitioned sub-maps. Hence the sub-maps can be largely displayed on wristwatch-type wearable devices and the pedestrian can recognize his/her location even when the sub-maps displayed are changed. Experiments demonstrate the effectiveness of our deformed map generation algorithm on wristwatch-type wearable devices.","PeriodicalId":416104,"journal":{"name":"2016 IEEE 5th Global Conference on Consumer Electronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comprehensive deformed map generation for wristwatch-type wearable devices based on landmark-based partitioning\",\"authors\":\"Keisuke Kono, Tomoyuki Nitta, Kazuaki Ishikawa, M. Yanagisawa, N. Togawa\",\"doi\":\"10.1109/GCCE.2016.7800432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, wristwatch-type wearable devices are developed and geographic information services have become widely available on them. In this paper, we propose a comprehensive deformed map generation algorithm for wristwatch-type wearable devices. Our algorithm first normalizes a pedestrian route to 0°, 45°, or 90° so that the pedestrian can see the route not tilting the wristwatch-type wearable device on his/her wrist. Second, our algorithm partitions the normalized map so that several landmarks are overlapped in the partitioned sub-maps. Hence the sub-maps can be largely displayed on wristwatch-type wearable devices and the pedestrian can recognize his/her location even when the sub-maps displayed are changed. Experiments demonstrate the effectiveness of our deformed map generation algorithm on wristwatch-type wearable devices.\",\"PeriodicalId\":416104,\"journal\":{\"name\":\"2016 IEEE 5th Global Conference on Consumer Electronics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 5th Global Conference on Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2016.7800432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 5th Global Conference on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2016.7800432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive deformed map generation for wristwatch-type wearable devices based on landmark-based partitioning
Recently, wristwatch-type wearable devices are developed and geographic information services have become widely available on them. In this paper, we propose a comprehensive deformed map generation algorithm for wristwatch-type wearable devices. Our algorithm first normalizes a pedestrian route to 0°, 45°, or 90° so that the pedestrian can see the route not tilting the wristwatch-type wearable device on his/her wrist. Second, our algorithm partitions the normalized map so that several landmarks are overlapped in the partitioned sub-maps. Hence the sub-maps can be largely displayed on wristwatch-type wearable devices and the pedestrian can recognize his/her location even when the sub-maps displayed are changed. Experiments demonstrate the effectiveness of our deformed map generation algorithm on wristwatch-type wearable devices.