W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, T. Grasser
{"title":"电荷捕获的高级建模:RTN、1/f噪声、SILC和BTI","authors":"W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, T. Grasser","doi":"10.1109/SISPAD.2014.6931567","DOIUrl":null,"url":null,"abstract":"In the course of years, several models have been put forward to explain noise phenomena, bias temperature instability (BTI), and gate leakage currents amongst other reliability issues. Mostly, these models have been developed independently and without considering that they may be caused by the same physical phenomenon. However, new experimental techniques have emerged, which are capable of studying these reliability issue on a microscopic level. One of them is the time-dependent defect spectroscopy (TDDS). Its intensive use has led to several interesting findings, including the fact that the recoverable component of BTI is due to reaction-limited processes. As a consequence, a quite detailed picture of the processes governing BTI has emerged. Interestingly, this picture has also been found to match the observations made for other reliability issues, such as random telegraph noise, 1/f noise, as well as gate leakage currents. Furthermore, the findings based on TDDS have lead to the development of capture/emission time (CET) maps, which can be used to understand the dynamic response of the defects given their widely distributed parameters.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Advanced modeling of charge trapping: RTN, 1/f noise, SILC, and BTI\",\"authors\":\"W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, T. Grasser\",\"doi\":\"10.1109/SISPAD.2014.6931567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the course of years, several models have been put forward to explain noise phenomena, bias temperature instability (BTI), and gate leakage currents amongst other reliability issues. Mostly, these models have been developed independently and without considering that they may be caused by the same physical phenomenon. However, new experimental techniques have emerged, which are capable of studying these reliability issue on a microscopic level. One of them is the time-dependent defect spectroscopy (TDDS). Its intensive use has led to several interesting findings, including the fact that the recoverable component of BTI is due to reaction-limited processes. As a consequence, a quite detailed picture of the processes governing BTI has emerged. Interestingly, this picture has also been found to match the observations made for other reliability issues, such as random telegraph noise, 1/f noise, as well as gate leakage currents. Furthermore, the findings based on TDDS have lead to the development of capture/emission time (CET) maps, which can be used to understand the dynamic response of the defects given their widely distributed parameters.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced modeling of charge trapping: RTN, 1/f noise, SILC, and BTI
In the course of years, several models have been put forward to explain noise phenomena, bias temperature instability (BTI), and gate leakage currents amongst other reliability issues. Mostly, these models have been developed independently and without considering that they may be caused by the same physical phenomenon. However, new experimental techniques have emerged, which are capable of studying these reliability issue on a microscopic level. One of them is the time-dependent defect spectroscopy (TDDS). Its intensive use has led to several interesting findings, including the fact that the recoverable component of BTI is due to reaction-limited processes. As a consequence, a quite detailed picture of the processes governing BTI has emerged. Interestingly, this picture has also been found to match the observations made for other reliability issues, such as random telegraph noise, 1/f noise, as well as gate leakage currents. Furthermore, the findings based on TDDS have lead to the development of capture/emission time (CET) maps, which can be used to understand the dynamic response of the defects given their widely distributed parameters.