面向工业物联网的软件定义动态5G网络切片管理

Ziran Min, Shashank Shekhar, C. Mahmoudi, Valerio Formicola, S. Gokhale, A. Gokhale
{"title":"面向工业物联网的软件定义动态5G网络切片管理","authors":"Ziran Min, Shashank Shekhar, C. Mahmoudi, Valerio Formicola, S. Gokhale, A. Gokhale","doi":"10.1109/NCA57778.2022.10013530","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenges of delivering fine-grained Quality of Service (QoS) and communication determinism over 5G wireless networks for real-time and autonomous needs of Industrial Internet of Things (IIoT) applications while effectively sharing network resources. Specifically, this work presents DANSM, a software-defined, dynamic and autonomous network slice management middleware for 5G-based IIoT use cases, such as adaptive robotic repair. The novelty of our approach lies in (1) the use of multiple M/M/1 queues to formulate a 5G network resource scheduling optimization problem comprising service-level and system-level objectives; (2) the design of a heuristics-based solution to overcome the NP-hard properties of this optimization problem, and (3) the implementation of a software-defined solution that incorporates the heuristics to dynamically and autonomously provision and manage 5G network slices that deliver predictable communications to IIoT use cases. Empirical studies evaluating DANSM on our testbed comprising a Free5GC-based core and UERANSIM-based simulations reveal that the software-defined DANSM solution can efficiently balance the traffic load in the data plane thereby reducing the end-to-end response time and improve the service performance by completing 34% more subtasks than a Modified Greedy Algorithm (MGA), 64% more subtasks than First Fit Descending (FFD) and 22% more subtasks than Best Fit Descending (BFD) approaches all while minimizing operational costs.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Software-defined Dynamic 5G Network Slice Management for Industrial Internet of Things\",\"authors\":\"Ziran Min, Shashank Shekhar, C. Mahmoudi, Valerio Formicola, S. Gokhale, A. Gokhale\",\"doi\":\"10.1109/NCA57778.2022.10013530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenges of delivering fine-grained Quality of Service (QoS) and communication determinism over 5G wireless networks for real-time and autonomous needs of Industrial Internet of Things (IIoT) applications while effectively sharing network resources. Specifically, this work presents DANSM, a software-defined, dynamic and autonomous network slice management middleware for 5G-based IIoT use cases, such as adaptive robotic repair. The novelty of our approach lies in (1) the use of multiple M/M/1 queues to formulate a 5G network resource scheduling optimization problem comprising service-level and system-level objectives; (2) the design of a heuristics-based solution to overcome the NP-hard properties of this optimization problem, and (3) the implementation of a software-defined solution that incorporates the heuristics to dynamically and autonomously provision and manage 5G network slices that deliver predictable communications to IIoT use cases. Empirical studies evaluating DANSM on our testbed comprising a Free5GC-based core and UERANSIM-based simulations reveal that the software-defined DANSM solution can efficiently balance the traffic load in the data plane thereby reducing the end-to-end response time and improve the service performance by completing 34% more subtasks than a Modified Greedy Algorithm (MGA), 64% more subtasks than First Fit Descending (FFD) and 22% more subtasks than Best Fit Descending (BFD) approaches all while minimizing operational costs.\",\"PeriodicalId\":251728,\"journal\":{\"name\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA57778.2022.10013530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文解决了在5G无线网络上提供细粒度服务质量(QoS)和通信确定性的挑战,以满足工业物联网(IIoT)应用的实时和自主需求,同时有效地共享网络资源。具体来说,这项工作提出了DANSM,这是一种软件定义的、动态的、自主的网络切片管理中间件,适用于基于5g的工业物联网用例,如自适应机器人维修。本文方法的新颖之处在于:(1)使用多个M/M/1队列来制定包含服务级和系统级目标的5G网络资源调度优化问题;(2)设计一种基于启发式的解决方案,以克服该优化问题的NP-hard属性;(3)实现一种软件定义的解决方案,该解决方案结合启发式,动态地、自主地提供和管理5G网络切片,为工业物联网用例提供可预测的通信。在基于free5gc的核心和基于ueransim的仿真测试平台上对DANSM进行的实证研究表明,软件定义的DANSM解决方案可以有效地平衡数据平面的流量负载,从而减少端到端响应时间,并通过比改进贪婪算法(MGA)多完成34%的子任务来提高服务性能。比首次拟合下降(FFD)方法多64%的子任务,比最佳拟合下降(BFD)方法多22%的子任务,同时最大限度地降低运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software-defined Dynamic 5G Network Slice Management for Industrial Internet of Things
This paper addresses the challenges of delivering fine-grained Quality of Service (QoS) and communication determinism over 5G wireless networks for real-time and autonomous needs of Industrial Internet of Things (IIoT) applications while effectively sharing network resources. Specifically, this work presents DANSM, a software-defined, dynamic and autonomous network slice management middleware for 5G-based IIoT use cases, such as adaptive robotic repair. The novelty of our approach lies in (1) the use of multiple M/M/1 queues to formulate a 5G network resource scheduling optimization problem comprising service-level and system-level objectives; (2) the design of a heuristics-based solution to overcome the NP-hard properties of this optimization problem, and (3) the implementation of a software-defined solution that incorporates the heuristics to dynamically and autonomously provision and manage 5G network slices that deliver predictable communications to IIoT use cases. Empirical studies evaluating DANSM on our testbed comprising a Free5GC-based core and UERANSIM-based simulations reveal that the software-defined DANSM solution can efficiently balance the traffic load in the data plane thereby reducing the end-to-end response time and improve the service performance by completing 34% more subtasks than a Modified Greedy Algorithm (MGA), 64% more subtasks than First Fit Descending (FFD) and 22% more subtasks than Best Fit Descending (BFD) approaches all while minimizing operational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs LoCaaS: Location-Certification-as-a-Service Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail Formal models for the verification, performance evaluation, and comparison of IoT communication protocols Swarming with (Visual) Secret (Shared) Mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1