{"title":"利用Navier方程对二维细胞核图像进行非刚性轮廓的时序配准","authors":"D. Sorokin, Marco Tektonidis, K. Rohr, P. Matula","doi":"10.1109/ISBI.2014.6867978","DOIUrl":null,"url":null,"abstract":"In live cell imaging it is essential to analyze the pure motion of sub-nuclear proteins without influence of the cell nucleus motion and deformation which is referred to as nucleus global motion. In this work, we propose a 2D contour-based image registration approach for compensation of the global motion of the nucleus. Compared to a previous contour-based approach, our approach employs an explicit rigid registration step to compensate the nucleus translation and rotation, it uses morphological contour matching for establishing more reliable correspondences between contours in consecutive frames, and utilizes the Navier equation for more realistically modeling the nucleus deformation. Our approach was successfully applied to real live cell microscopy image sequences and an experimental comparison with an existing contour-based registration method and an intensity-based registration method has been performed.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Non-rigid contour-based temporal registration of 2D cell nuclei images using the Navier equation\",\"authors\":\"D. Sorokin, Marco Tektonidis, K. Rohr, P. Matula\",\"doi\":\"10.1109/ISBI.2014.6867978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In live cell imaging it is essential to analyze the pure motion of sub-nuclear proteins without influence of the cell nucleus motion and deformation which is referred to as nucleus global motion. In this work, we propose a 2D contour-based image registration approach for compensation of the global motion of the nucleus. Compared to a previous contour-based approach, our approach employs an explicit rigid registration step to compensate the nucleus translation and rotation, it uses morphological contour matching for establishing more reliable correspondences between contours in consecutive frames, and utilizes the Navier equation for more realistically modeling the nucleus deformation. Our approach was successfully applied to real live cell microscopy image sequences and an experimental comparison with an existing contour-based registration method and an intensity-based registration method has been performed.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-rigid contour-based temporal registration of 2D cell nuclei images using the Navier equation
In live cell imaging it is essential to analyze the pure motion of sub-nuclear proteins without influence of the cell nucleus motion and deformation which is referred to as nucleus global motion. In this work, we propose a 2D contour-based image registration approach for compensation of the global motion of the nucleus. Compared to a previous contour-based approach, our approach employs an explicit rigid registration step to compensate the nucleus translation and rotation, it uses morphological contour matching for establishing more reliable correspondences between contours in consecutive frames, and utilizes the Navier equation for more realistically modeling the nucleus deformation. Our approach was successfully applied to real live cell microscopy image sequences and an experimental comparison with an existing contour-based registration method and an intensity-based registration method has been performed.