阅读时眼动扫描的生物特征识别

C. Holland, Oleg V. Komogortsev
{"title":"阅读时眼动扫描的生物特征识别","authors":"C. Holland, Oleg V. Komogortsev","doi":"10.1109/IJCB.2011.6117536","DOIUrl":null,"url":null,"abstract":"This paper presents an objective evaluation of various eye movement-based biometric features and their ability to accurately and precisely distinguish unique individuals. Eye movements are uniquely counterfeit resistant due to the complex neurological interactions and the extraocular muscle properties involved in their generation. Considered biometric candidates cover a number of basic eye movements and their aggregated scanpath characteristics, including: fixation count, average fixation duration, average saccade amplitudes, average saccade velocities, average saccade peak velocities, the velocity waveform, scanpath length, scanpath area, regions of interest, scanpath inflections, the amplitude-duration relationship, the main sequence relationship, and the pairwise distance between fixations. As well, an information fusion method for combining these metrics into a single identification algorithm is presented. With limited testing this method was able to identify subjects with an equal error rate of 27%. These results indicate that scanpath-based biometric identification holds promise as a behavioral biometric technique.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Biometric identification via eye movement scanpaths in reading\",\"authors\":\"C. Holland, Oleg V. Komogortsev\",\"doi\":\"10.1109/IJCB.2011.6117536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an objective evaluation of various eye movement-based biometric features and their ability to accurately and precisely distinguish unique individuals. Eye movements are uniquely counterfeit resistant due to the complex neurological interactions and the extraocular muscle properties involved in their generation. Considered biometric candidates cover a number of basic eye movements and their aggregated scanpath characteristics, including: fixation count, average fixation duration, average saccade amplitudes, average saccade velocities, average saccade peak velocities, the velocity waveform, scanpath length, scanpath area, regions of interest, scanpath inflections, the amplitude-duration relationship, the main sequence relationship, and the pairwise distance between fixations. As well, an information fusion method for combining these metrics into a single identification algorithm is presented. With limited testing this method was able to identify subjects with an equal error rate of 27%. These results indicate that scanpath-based biometric identification holds promise as a behavioral biometric technique.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

本文提出了一种客观评价各种基于眼动的生物特征及其准确和精确区分独特个体的能力。由于复杂的神经相互作用和眼外肌特性,眼动具有独特的抗伪造性。考虑的候选生物特征涵盖了许多基本的眼球运动及其聚合的扫描路径特征,包括:注视次数、平均注视持续时间、平均扫视幅度、平均扫视速度、平均扫视峰值速度、速度波形、扫描路径长度、扫描路径面积、感兴趣区域、扫描路径弯曲、振幅-持续时间关系、主序列关系以及注视之间的成对距离。同时,提出了一种信息融合方法,将这些指标组合成一个单一的识别算法。通过有限的测试,该方法能够以27%的错误率识别受试者。这些结果表明,基于扫描路径的生物识别技术有望成为一种行为生物识别技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biometric identification via eye movement scanpaths in reading
This paper presents an objective evaluation of various eye movement-based biometric features and their ability to accurately and precisely distinguish unique individuals. Eye movements are uniquely counterfeit resistant due to the complex neurological interactions and the extraocular muscle properties involved in their generation. Considered biometric candidates cover a number of basic eye movements and their aggregated scanpath characteristics, including: fixation count, average fixation duration, average saccade amplitudes, average saccade velocities, average saccade peak velocities, the velocity waveform, scanpath length, scanpath area, regions of interest, scanpath inflections, the amplitude-duration relationship, the main sequence relationship, and the pairwise distance between fixations. As well, an information fusion method for combining these metrics into a single identification algorithm is presented. With limited testing this method was able to identify subjects with an equal error rate of 27%. These results indicate that scanpath-based biometric identification holds promise as a behavioral biometric technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1