H. Kung, Chit-Kwan Lin, Tsung-Han Lin, Stephen J. Tarsa, D. Vlah
{"title":"在地对空无线802.11网状网络中测量低空无人机上的分集","authors":"H. Kung, Chit-Kwan Lin, Tsung-Han Lin, Stephen J. Tarsa, D. Vlah","doi":"10.1109/GLOCOMW.2010.5700251","DOIUrl":null,"url":null,"abstract":"We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception. We present a series of measurement results from a real-world testbed that characterize the resulting wireless channel. We show that the correlation between receiver nodes on the airplane is poor at small time scales so receiver diversity can be exploited. Our measurements suggest that using several receiver nodes simultaneously can boost packet delivery rates substantially. Lastly, we show that similar results apply to transmitter selection diversity as well.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Measuring diversity on a low-altitude UAV in a ground-to-air wireless 802.11 mesh network\",\"authors\":\"H. Kung, Chit-Kwan Lin, Tsung-Han Lin, Stephen J. Tarsa, D. Vlah\",\"doi\":\"10.1109/GLOCOMW.2010.5700251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception. We present a series of measurement results from a real-world testbed that characterize the resulting wireless channel. We show that the correlation between receiver nodes on the airplane is poor at small time scales so receiver diversity can be exploited. Our measurements suggest that using several receiver nodes simultaneously can boost packet delivery rates substantially. Lastly, we show that similar results apply to transmitter selection diversity as well.\",\"PeriodicalId\":232205,\"journal\":{\"name\":\"2010 IEEE Globecom Workshops\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Globecom Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2010.5700251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5700251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring diversity on a low-altitude UAV in a ground-to-air wireless 802.11 mesh network
We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception. We present a series of measurement results from a real-world testbed that characterize the resulting wireless channel. We show that the correlation between receiver nodes on the airplane is poor at small time scales so receiver diversity can be exploited. Our measurements suggest that using several receiver nodes simultaneously can boost packet delivery rates substantially. Lastly, we show that similar results apply to transmitter selection diversity as well.