LinkedIn的数据基础设施

Aditya Auradkar, C. Botev, Shirshanka Das, Dave De Maagd, Alex Feinberg, Phanindra Ganti, L. Gao, B. Ghosh, K. Gopalakrishna, B. Harris, J. Koshy, Kevin Krawez, J. Kreps, Shih-Hui Lu, S. Nagaraj, N. Narkhede, S. Pachev, I. Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, C. Tran, B. Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang
{"title":"LinkedIn的数据基础设施","authors":"Aditya Auradkar, C. Botev, Shirshanka Das, Dave De Maagd, Alex Feinberg, Phanindra Ganti, L. Gao, B. Ghosh, K. Gopalakrishna, B. Harris, J. Koshy, Kevin Krawez, J. Kreps, Shih-Hui Lu, S. Nagaraj, N. Narkhede, S. Pachev, I. Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, C. Tran, B. Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang","doi":"10.1109/ICDE.2012.147","DOIUrl":null,"url":null,"abstract":"Linked In is among the largest social networking sites in the world. As the company has grown, our core data sets and request processing requirements have grown as well. In this paper, we describe a few selected data infrastructure projects at Linked In that have helped us accommodate this increasing scale. Most of those projects build on existing open source projects and are themselves available as open source. The projects covered in this paper include: (1) Voldemort: a scalable and fault tolerant key-value store, (2) Data bus: a framework for delivering database changes to downstream applications, (3) Espresso: a distributed data store that supports flexible schemas and secondary indexing, (4) Kafka: a scalable and efficient messaging system for collecting various user activity events and log data.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Data Infrastructure at LinkedIn\",\"authors\":\"Aditya Auradkar, C. Botev, Shirshanka Das, Dave De Maagd, Alex Feinberg, Phanindra Ganti, L. Gao, B. Ghosh, K. Gopalakrishna, B. Harris, J. Koshy, Kevin Krawez, J. Kreps, Shih-Hui Lu, S. Nagaraj, N. Narkhede, S. Pachev, I. Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, C. Tran, B. Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang\",\"doi\":\"10.1109/ICDE.2012.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linked In is among the largest social networking sites in the world. As the company has grown, our core data sets and request processing requirements have grown as well. In this paper, we describe a few selected data infrastructure projects at Linked In that have helped us accommodate this increasing scale. Most of those projects build on existing open source projects and are themselves available as open source. The projects covered in this paper include: (1) Voldemort: a scalable and fault tolerant key-value store, (2) Data bus: a framework for delivering database changes to downstream applications, (3) Espresso: a distributed data store that supports flexible schemas and secondary indexing, (4) Kafka: a scalable and efficient messaging system for collecting various user activity events and log data.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

领英是世界上最大的社交网站之一。随着公司的发展,我们的核心数据集和请求处理需求也在增长。在本文中,我们描述了Linked In的一些选定的数据基础设施项目,这些项目帮助我们适应了这种不断增长的规模。这些项目中的大多数都建立在现有的开源项目之上,并且它们本身就是开源的。本文涉及的项目包括:(1)Voldemort:一个可扩展和容错的键值存储,(2)数据总线:一个将数据库更改交付给下游应用程序的框架,(3)Espresso:一个支持灵活模式和二级索引的分布式数据存储,(4)Kafka:一个可扩展和高效的消息传递系统,用于收集各种用户活动事件和日志数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Infrastructure at LinkedIn
Linked In is among the largest social networking sites in the world. As the company has grown, our core data sets and request processing requirements have grown as well. In this paper, we describe a few selected data infrastructure projects at Linked In that have helped us accommodate this increasing scale. Most of those projects build on existing open source projects and are themselves available as open source. The projects covered in this paper include: (1) Voldemort: a scalable and fault tolerant key-value store, (2) Data bus: a framework for delivering database changes to downstream applications, (3) Espresso: a distributed data store that supports flexible schemas and secondary indexing, (4) Kafka: a scalable and efficient messaging system for collecting various user activity events and log data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1