Bo-Han Wu, Chun-Ju Yang, Chung-Yang Huang, J. H. Jiang
{"title":"一个强大的功能性ECO发动机,通过SAT证明最小化和插值技术","authors":"Bo-Han Wu, Chun-Ju Yang, Chung-Yang Huang, J. H. Jiang","doi":"10.1109/ICCAD.2010.5654265","DOIUrl":null,"url":null,"abstract":"Functional rectification in late design stages has been a crucial process in modern complex system design. This paper proposes a robust functional ECO engine, which applies SAT proof minimization and interpolation techniques to automate patch construction to make old implementation and golden specification functionally equivalent. The SAT proof minimization technique provides a sound and efficient way of fixing easy errors, and the interpolation technique provides a complete and robust way of fixing remaining errors. Experimental results show that our engine performs robustly to generate small patches in fixing various design rectification instances.","PeriodicalId":344703,"journal":{"name":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A robust functional ECO engine by SAT proof minimization and interpolation techniques\",\"authors\":\"Bo-Han Wu, Chun-Ju Yang, Chung-Yang Huang, J. H. Jiang\",\"doi\":\"10.1109/ICCAD.2010.5654265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional rectification in late design stages has been a crucial process in modern complex system design. This paper proposes a robust functional ECO engine, which applies SAT proof minimization and interpolation techniques to automate patch construction to make old implementation and golden specification functionally equivalent. The SAT proof minimization technique provides a sound and efficient way of fixing easy errors, and the interpolation technique provides a complete and robust way of fixing remaining errors. Experimental results show that our engine performs robustly to generate small patches in fixing various design rectification instances.\",\"PeriodicalId\":344703,\"journal\":{\"name\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2010.5654265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2010.5654265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A robust functional ECO engine by SAT proof minimization and interpolation techniques
Functional rectification in late design stages has been a crucial process in modern complex system design. This paper proposes a robust functional ECO engine, which applies SAT proof minimization and interpolation techniques to automate patch construction to make old implementation and golden specification functionally equivalent. The SAT proof minimization technique provides a sound and efficient way of fixing easy errors, and the interpolation technique provides a complete and robust way of fixing remaining errors. Experimental results show that our engine performs robustly to generate small patches in fixing various design rectification instances.