二维反卷积的迭代算法

Zhang Shengfu, Shen Haiming, Zhao Huichang, Zhao Zhilin
{"title":"二维反卷积的迭代算法","authors":"Zhang Shengfu, Shen Haiming, Zhao Huichang, Zhao Zhilin","doi":"10.1109/ICSIGP.1996.567044","DOIUrl":null,"url":null,"abstract":"This paper discusses a finite iterative method for computing 2-D deconvolution. The given algorithm doesn't have any convergent problems and doesn't deal with any complex irrational factors or know all of x(n/sub 1/, n/sub 2/) or y(n/sub 1/, n/sub 2/). So it can be called a semi-blind algorithm for 2-D deconvolution. A flow diagram of the algorithm, comparison of computational cost and FFT are given.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An iterative algorithm for 2-D deconvolution\",\"authors\":\"Zhang Shengfu, Shen Haiming, Zhao Huichang, Zhao Zhilin\",\"doi\":\"10.1109/ICSIGP.1996.567044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a finite iterative method for computing 2-D deconvolution. The given algorithm doesn't have any convergent problems and doesn't deal with any complex irrational factors or know all of x(n/sub 1/, n/sub 2/) or y(n/sub 1/, n/sub 2/). So it can be called a semi-blind algorithm for 2-D deconvolution. A flow diagram of the algorithm, comparison of computational cost and FFT are given.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.567044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.567044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一种计算二维反卷积的有限迭代方法。给定的算法没有任何收敛问题也不处理任何复杂的无理数因子也不知道所有的x(n/ 1/, n/ 2/)或y(n/ 1/, n/ 2/)所以它可以被称为二维反卷积的半盲算法。给出了算法流程图,并与FFT算法的计算成本进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An iterative algorithm for 2-D deconvolution
This paper discusses a finite iterative method for computing 2-D deconvolution. The given algorithm doesn't have any convergent problems and doesn't deal with any complex irrational factors or know all of x(n/sub 1/, n/sub 2/) or y(n/sub 1/, n/sub 2/). So it can be called a semi-blind algorithm for 2-D deconvolution. A flow diagram of the algorithm, comparison of computational cost and FFT are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive vector quantization based on neural network Fast convergence algorithm for wavelet neural network used for signal or function approximation The study of ultrasonic imaging system for austenitic welds testing Identification of pelagic eggs by image analysis Using ANN for the recognition of vibration signals of off-shore equipment's failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1