软件网络中成本感知和基于人工智能的资源预测

V. Eramo, Francesco Valente, F. Lavacca, T. Catena
{"title":"软件网络中成本感知和基于人工智能的资源预测","authors":"V. Eramo, Francesco Valente, F. Lavacca, T. Catena","doi":"10.23919/AEIT53387.2021.9626866","DOIUrl":null,"url":null,"abstract":"Resource prediction algorithms have been recently proposed in Network Function Virtualization Architectures. An prediction-based resource allocation is characterized by higher operation costs due to: i) resource underestimate that leads to Quality of Service degradation; ii) used cloud resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose cost-aware prediction algorithm able to minimize the sum of the two cost components previously mentioned. We compare in a real network and traffic scenario the proposed technique to the traditional one in which the Root Mean Squared Error. We show home the proposed solution allows for cost advantages in the order of 20%.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost-Aware and AI-based Resource Prediction in Softwarized Networks\",\"authors\":\"V. Eramo, Francesco Valente, F. Lavacca, T. Catena\",\"doi\":\"10.23919/AEIT53387.2021.9626866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource prediction algorithms have been recently proposed in Network Function Virtualization Architectures. An prediction-based resource allocation is characterized by higher operation costs due to: i) resource underestimate that leads to Quality of Service degradation; ii) used cloud resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose cost-aware prediction algorithm able to minimize the sum of the two cost components previously mentioned. We compare in a real network and traffic scenario the proposed technique to the traditional one in which the Root Mean Squared Error. We show home the proposed solution allows for cost advantages in the order of 20%.\",\"PeriodicalId\":138886,\"journal\":{\"name\":\"2021 AEIT International Annual Conference (AEIT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT53387.2021.9626866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近在网络功能虚拟化体系结构中提出了资源预测算法。基于预测的资源分配的特点是较高的运营成本,这是由于:1)资源低估导致服务质量下降;Ii)发生资源高估时使用的云资源过度分配。为了降低这种成本,我们提出了一种成本感知预测算法,该算法能够最小化前面提到的两个成本组成部分的总和。在一个真实的网络和流量场景中,我们将所提出的技术与传统的均方根误差方法进行了比较。我们展示了所提出的解决方案允许在20%左右的成本优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Aware and AI-based Resource Prediction in Softwarized Networks
Resource prediction algorithms have been recently proposed in Network Function Virtualization Architectures. An prediction-based resource allocation is characterized by higher operation costs due to: i) resource underestimate that leads to Quality of Service degradation; ii) used cloud resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose cost-aware prediction algorithm able to minimize the sum of the two cost components previously mentioned. We compare in a real network and traffic scenario the proposed technique to the traditional one in which the Root Mean Squared Error. We show home the proposed solution allows for cost advantages in the order of 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wind power forecasting models for very short-term operation of power systems MOSFETs Selection in Front-end Active Bridge Rectifier On Comparing Regressive and Artificial Neural Network Methods for Power System Forecast FExWaveS application for voltage dips origin assessment: optimization of the tool in views of its integration into the QuEEN monitoring system OPF model with dynamic security constraints: a state of the art review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1