基于动物移动网络的牲畜回路特征

G. Filho, Jos e
{"title":"基于动物移动网络的牲畜回路特征","authors":"G. Filho, Jos e","doi":"10.11606/T.10.2012.tde-24042014-075742","DOIUrl":null,"url":null,"abstract":"A network is a set of nodes that are linked together by a set of edges. Networks can represent any set of objects that have relations among themselves. Communities are sets of nodes that are related in an important way, probably sharing common properties and/or playing similar roles within a network. When network analysis is applied to study the livestock movement patterns, the epidemiological units of interest (farm premises, counties, states, countries, etc.) are represented as nodes, and animal movements between the nodes are represented as the edges of a network. Unraveling a network structure, and hence the trade preferences and pathways, could be very useful to a researcher or a decision-maker. We implemented a community detection algorithm to find livestock communities that is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its life time than expected by chance. We applied this algorithm to the network of within animal movements made inside the State of Mato Grosso, for the year of 2007. This database holds information about 87,899 premises and 521,431 movements throughout the year, totalizing 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features to preventive veterinary medicine applications, and also has a meaningful interpretation in trade networks where links emerge from the choice of trader nodes.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Caracterização de circuitos pecuários com base em redes de movimentação de animais\",\"authors\":\"G. Filho, Jos e\",\"doi\":\"10.11606/T.10.2012.tde-24042014-075742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A network is a set of nodes that are linked together by a set of edges. Networks can represent any set of objects that have relations among themselves. Communities are sets of nodes that are related in an important way, probably sharing common properties and/or playing similar roles within a network. When network analysis is applied to study the livestock movement patterns, the epidemiological units of interest (farm premises, counties, states, countries, etc.) are represented as nodes, and animal movements between the nodes are represented as the edges of a network. Unraveling a network structure, and hence the trade preferences and pathways, could be very useful to a researcher or a decision-maker. We implemented a community detection algorithm to find livestock communities that is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its life time than expected by chance. We applied this algorithm to the network of within animal movements made inside the State of Mato Grosso, for the year of 2007. This database holds information about 87,899 premises and 521,431 movements throughout the year, totalizing 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features to preventive veterinary medicine applications, and also has a meaningful interpretation in trade networks where links emerge from the choice of trader nodes.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11606/T.10.2012.tde-24042014-075742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/T.10.2012.tde-24042014-075742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络是由一组边连接在一起的一组节点。网络可以表示彼此之间有关系的任何一组对象。社区是一组节点,它们以一种重要的方式相互关联,可能在网络中共享共同的属性和/或扮演相似的角色。当网络分析应用于研究牲畜运动模式时,感兴趣的流行病学单位(农场、县、州、国家等)被表示为节点,节点之间的动物运动被表示为网络的边缘。揭示一个网络结构,从而揭示贸易偏好和途径,对研究人员或决策者可能非常有用。我们实施了一种社区检测算法,以寻找符合牲畜生产区定义的牲畜社区,假设社区是一组农场场所,其中动物在其一生中比偶然预期更有可能留在其中。我们将这个算法应用到2007年马托格罗索州内部动物运动的网络中。该数据库保存了全年87,899个场所和521,431次移动的信息,总共移动了15,844,779只动物。社区检测算法实现了网络分区,显示了明确的地理和商业模式,这是预防兽药应用的两个关键特征,并且在贸易网络中也有意义的解释,其中链接来自贸易商节点的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caracterização de circuitos pecuários com base em redes de movimentação de animais
A network is a set of nodes that are linked together by a set of edges. Networks can represent any set of objects that have relations among themselves. Communities are sets of nodes that are related in an important way, probably sharing common properties and/or playing similar roles within a network. When network analysis is applied to study the livestock movement patterns, the epidemiological units of interest (farm premises, counties, states, countries, etc.) are represented as nodes, and animal movements between the nodes are represented as the edges of a network. Unraveling a network structure, and hence the trade preferences and pathways, could be very useful to a researcher or a decision-maker. We implemented a community detection algorithm to find livestock communities that is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its life time than expected by chance. We applied this algorithm to the network of within animal movements made inside the State of Mato Grosso, for the year of 2007. This database holds information about 87,899 premises and 521,431 movements throughout the year, totalizing 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features to preventive veterinary medicine applications, and also has a meaningful interpretation in trade networks where links emerge from the choice of trader nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy A review of mass concentrations of Bramblings Fringilla montifringilla: implications for assessment of large numbers of birds Spatial Registration Evaluation of [18F]-MK6240 PET Comparison of surface thermal patterns of horses and donkeys in IRT images Utilization of 3D segmentation for measurement of pediatric brain tumor outcomes after treatment: review of available tools, step-by-step instructions, and applications to clinical practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1