用于图像合成增强的统一角度调整网络

Jin-woong Ko, Nyeong-Ho Shin, Seon-Ho Lee, Chang-Su Kim
{"title":"用于图像合成增强的统一角度调整网络","authors":"Jin-woong Ko, Nyeong-Ho Shin, Seon-Ho Lee, Chang-Su Kim","doi":"10.23919/APSIPAASC55919.2022.9979887","DOIUrl":null,"url":null,"abstract":"We propose an angle adjustment algorithm for the composition enhancement of digital photographs. The proposed algorithm jointly learns the scene type, composition, and semantic line information of an image to improve the accuracy of angle adjustment. To this end, we design a unified angle adjustment network (UAAN), which consists of a unified encoder and four task-specific refinement modules and estimators. First, we generate shared features using the unified encoder. Then, we refine those features using the refinement modules to perform the four tasks of angle regression, scene type classification, composition classification, and semantic line detection. Experimental results demonstrate the effectiveness of the proposed UAAN algorithm.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified Angle Adjustment Network for Image Composition Enhancement\",\"authors\":\"Jin-woong Ko, Nyeong-Ho Shin, Seon-Ho Lee, Chang-Su Kim\",\"doi\":\"10.23919/APSIPAASC55919.2022.9979887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an angle adjustment algorithm for the composition enhancement of digital photographs. The proposed algorithm jointly learns the scene type, composition, and semantic line information of an image to improve the accuracy of angle adjustment. To this end, we design a unified angle adjustment network (UAAN), which consists of a unified encoder and four task-specific refinement modules and estimators. First, we generate shared features using the unified encoder. Then, we refine those features using the refinement modules to perform the four tasks of angle regression, scene type classification, composition classification, and semantic line detection. Experimental results demonstrate the effectiveness of the proposed UAAN algorithm.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9979887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种增强数码照片构图的角度调整算法。该算法联合学习图像的场景类型、构成和语义线信息,提高角度调整的精度。为此,我们设计了一个统一的角度调整网络(UAAN),该网络由一个统一的编码器和四个特定任务的细化模块和估计器组成。首先,我们使用统一编码器生成共享特征。然后,我们使用改进模块对这些特征进行细化,完成角度回归、场景类型分类、构图分类和语义线检测四个任务。实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unified Angle Adjustment Network for Image Composition Enhancement
We propose an angle adjustment algorithm for the composition enhancement of digital photographs. The proposed algorithm jointly learns the scene type, composition, and semantic line information of an image to improve the accuracy of angle adjustment. To this end, we design a unified angle adjustment network (UAAN), which consists of a unified encoder and four task-specific refinement modules and estimators. First, we generate shared features using the unified encoder. Then, we refine those features using the refinement modules to perform the four tasks of angle regression, scene type classification, composition classification, and semantic line detection. Experimental results demonstrate the effectiveness of the proposed UAAN algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-class Vehicle Counting System for Multi-view Traffic Videos Optimal Deep Multi-Route Self-Attention for Single Image Super-Resolution Distance Estimation Between Camera and Vehicles from an Image using YOLO and Machine Learning ASGAN-VC: One-Shot Voice Conversion with Additional Style Embedding and Generative Adversarial Networks PVGCRA: Prediction Variance Guided Cross Region Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1