{"title":"基于最近邻分类器和神经网络的高效分类编码模式在手写体印地语数字识别中的应用","authors":"Y. B. Mahdy, M. El-Melegy","doi":"10.1109/ICSIGP.1996.566558","DOIUrl":null,"url":null,"abstract":"Encoding of relevant information from visual patterns represents an important challenging component of pattern recognition. This paper proposes a contour-following based algorithm for extracting features from patterns. For classification of the encoded patterns by nearest neighbor (NN) classifiers, an iterative clustering algorithm is proposed to obtain a reduced, but efficient, number of prototypes. The algorithm works in a supervised mode and can perform cluster merging and cancelling. Moreover, mapping this NN classifier to a multilayer feedforward neural network is investigated. The performance of the algorithms is demonstrated through application to the task of handwritten Hindi numeral recognition. Experiments reveal the advantages of handling flexible sizes, orientations and variations.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Encoding patterns for efficient classification by nearest neighbor classifiers and neural networks with application to handwritten Hindi numeral recognition\",\"authors\":\"Y. B. Mahdy, M. El-Melegy\",\"doi\":\"10.1109/ICSIGP.1996.566558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encoding of relevant information from visual patterns represents an important challenging component of pattern recognition. This paper proposes a contour-following based algorithm for extracting features from patterns. For classification of the encoded patterns by nearest neighbor (NN) classifiers, an iterative clustering algorithm is proposed to obtain a reduced, but efficient, number of prototypes. The algorithm works in a supervised mode and can perform cluster merging and cancelling. Moreover, mapping this NN classifier to a multilayer feedforward neural network is investigated. The performance of the algorithms is demonstrated through application to the task of handwritten Hindi numeral recognition. Experiments reveal the advantages of handling flexible sizes, orientations and variations.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.566558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Encoding patterns for efficient classification by nearest neighbor classifiers and neural networks with application to handwritten Hindi numeral recognition
Encoding of relevant information from visual patterns represents an important challenging component of pattern recognition. This paper proposes a contour-following based algorithm for extracting features from patterns. For classification of the encoded patterns by nearest neighbor (NN) classifiers, an iterative clustering algorithm is proposed to obtain a reduced, but efficient, number of prototypes. The algorithm works in a supervised mode and can perform cluster merging and cancelling. Moreover, mapping this NN classifier to a multilayer feedforward neural network is investigated. The performance of the algorithms is demonstrated through application to the task of handwritten Hindi numeral recognition. Experiments reveal the advantages of handling flexible sizes, orientations and variations.