{"title":"一种自对准纳米I-MOS(冲击电离MOS)制备新方法","authors":"W. Choi, B. Choi, D. Woo, J. Lee, Byung-Gook Park","doi":"10.1109/DRC.2004.1367869","DOIUrl":null,"url":null,"abstract":"I-MOS uses modulation of the avalanche breakdown voltage of a gated p-i-n structure to control the output current. Because the p-n junction barrier lowering is not the mechanism of current flow control in the device, it can reduce the subthreshold swing to less than 60 mV/dec at room temperature. However, there are two main obstacles to scale the I-MOS down to nanoscale regime: 1) the source and drain are made up of different types of dopants; 2) the i-region, which is not overlapped by the gate, lies between channel and source. Therefore, in the conventional I-MOS process, the gate, the source and the drain cannot be self-aligned. In this paper, a 130 nm n-channel I-MOS was fabricated for the first time using a novel self-aligned fabrication method. It showed normal transistor operation with dramatically small subthreshold swing (7.2 mV/dec) at room temperature. In addition, to make the I-MOS more practical, we also proposed a novel biasing scheme based on the device physics.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A new fabrication method for self-aligned nanoscale I-MOS (impact-ionization MOS)\",\"authors\":\"W. Choi, B. Choi, D. Woo, J. Lee, Byung-Gook Park\",\"doi\":\"10.1109/DRC.2004.1367869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I-MOS uses modulation of the avalanche breakdown voltage of a gated p-i-n structure to control the output current. Because the p-n junction barrier lowering is not the mechanism of current flow control in the device, it can reduce the subthreshold swing to less than 60 mV/dec at room temperature. However, there are two main obstacles to scale the I-MOS down to nanoscale regime: 1) the source and drain are made up of different types of dopants; 2) the i-region, which is not overlapped by the gate, lies between channel and source. Therefore, in the conventional I-MOS process, the gate, the source and the drain cannot be self-aligned. In this paper, a 130 nm n-channel I-MOS was fabricated for the first time using a novel self-aligned fabrication method. It showed normal transistor operation with dramatically small subthreshold swing (7.2 mV/dec) at room temperature. In addition, to make the I-MOS more practical, we also proposed a novel biasing scheme based on the device physics.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new fabrication method for self-aligned nanoscale I-MOS (impact-ionization MOS)
I-MOS uses modulation of the avalanche breakdown voltage of a gated p-i-n structure to control the output current. Because the p-n junction barrier lowering is not the mechanism of current flow control in the device, it can reduce the subthreshold swing to less than 60 mV/dec at room temperature. However, there are two main obstacles to scale the I-MOS down to nanoscale regime: 1) the source and drain are made up of different types of dopants; 2) the i-region, which is not overlapped by the gate, lies between channel and source. Therefore, in the conventional I-MOS process, the gate, the source and the drain cannot be self-aligned. In this paper, a 130 nm n-channel I-MOS was fabricated for the first time using a novel self-aligned fabrication method. It showed normal transistor operation with dramatically small subthreshold swing (7.2 mV/dec) at room temperature. In addition, to make the I-MOS more practical, we also proposed a novel biasing scheme based on the device physics.