s - α - sg分布噪声环境下基于径向基函数神经网络处理的波束形成新方法

Daifeng Zha
{"title":"s - α - sg分布噪声环境下基于径向基函数神经网络处理的波束形成新方法","authors":"Daifeng Zha","doi":"10.1109/ICCCAS.2007.6250060","DOIUrl":null,"url":null,"abstract":"This paper considers the beamforming problem with radial-basis function network in alpha stable noise environment. In the new noise environment, a novel training method is proposed based on covariation. Comparing the output of the network with the analytical solution, it is found that they are very consistent. Then, it is reasonable to perform beamforming by using radial-basis function network.","PeriodicalId":218351,"journal":{"name":"2007 International Conference on Communications, Circuits and Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New beamforming method based on radial- basis function neural network processing in SαSG distribution noise environments\",\"authors\":\"Daifeng Zha\",\"doi\":\"10.1109/ICCCAS.2007.6250060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the beamforming problem with radial-basis function network in alpha stable noise environment. In the new noise environment, a novel training method is proposed based on covariation. Comparing the output of the network with the analytical solution, it is found that they are very consistent. Then, it is reasonable to perform beamforming by using radial-basis function network.\",\"PeriodicalId\":218351,\"journal\":{\"name\":\"2007 International Conference on Communications, Circuits and Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Communications, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCAS.2007.6250060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Communications, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2007.6250060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了稳定噪声环境下径向基函数网络的波束形成问题。在新的噪声环境下,提出了一种基于协变的训练方法。将网络的输出与解析解进行比较,发现它们非常一致。因此,采用径向基函数网络进行波束形成是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New beamforming method based on radial- basis function neural network processing in SαSG distribution noise environments
This paper considers the beamforming problem with radial-basis function network in alpha stable noise environment. In the new noise environment, a novel training method is proposed based on covariation. Comparing the output of the network with the analytical solution, it is found that they are very consistent. Then, it is reasonable to perform beamforming by using radial-basis function network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DC Tolerance Analysis of Nonlinear Circuits Using Set-Valued Functions Mining Co-regulated Genes Using Association Rules Combined with Hash-tree and Genetic Algorithms MTIM for IEEE 802.11 DCF power saving mode The Total Dose Radiation Hardened MOSFET with Good High-temperatue Performance Partner choice based on beam search in wireless cooperative networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1