遗传算法与模糊推理系统

R. Matousek, P. Osmera, J. Roupec
{"title":"遗传算法与模糊推理系统","authors":"R. Matousek, P. Osmera, J. Roupec","doi":"10.1109/CEC.2000.870359","DOIUrl":null,"url":null,"abstract":"Applications of genetic algorithms (GA) for optimisation problems are widely known as well as their advantages and disadvantages compared with classical numerical methods. In practical tests, GA appears a robust method with a broad range of applications. The determination of GA parameters could be complicated. Therefore for some real-life applications, several empirical observations of an experienced expert are needed to define these parameters. This fact degrades the applicability of a GA for most of the real-world problems and users. Therefore, this article discusses some possibilities with setting GA parameters. The setting method of GA parameters is based on the fuzzy control of values of GA parameters. The feedback for the fuzzy control of GA parameters is realized by virtue of the behavior of some GA characteristics. The goal of this article is to present the conception of the solution and some new ideas.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GA with fuzzy inference system\",\"authors\":\"R. Matousek, P. Osmera, J. Roupec\",\"doi\":\"10.1109/CEC.2000.870359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications of genetic algorithms (GA) for optimisation problems are widely known as well as their advantages and disadvantages compared with classical numerical methods. In practical tests, GA appears a robust method with a broad range of applications. The determination of GA parameters could be complicated. Therefore for some real-life applications, several empirical observations of an experienced expert are needed to define these parameters. This fact degrades the applicability of a GA for most of the real-world problems and users. Therefore, this article discusses some possibilities with setting GA parameters. The setting method of GA parameters is based on the fuzzy control of values of GA parameters. The feedback for the fuzzy control of GA parameters is realized by virtue of the behavior of some GA characteristics. The goal of this article is to present the conception of the solution and some new ideas.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

遗传算法在优化问题中的应用是众所周知的,并且与经典数值方法相比,遗传算法有其优点和缺点。在实际测试中,遗传算法显示出一种鲁棒的方法,具有广泛的应用范围。遗传算法参数的确定比较复杂。因此,对于一些实际应用,需要有经验的专家进行一些经验观察来定义这些参数。这一事实降低了遗传算法对大多数现实问题和用户的适用性。因此,本文讨论了设置GA参数的一些可能性。遗传算法参数的设置方法是基于遗传算法参数值的模糊控制。利用遗传算法某些特性的行为,实现了对遗传算法参数模糊控制的反馈。本文的目的是提出解决方案的概念和一些新的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GA with fuzzy inference system
Applications of genetic algorithms (GA) for optimisation problems are widely known as well as their advantages and disadvantages compared with classical numerical methods. In practical tests, GA appears a robust method with a broad range of applications. The determination of GA parameters could be complicated. Therefore for some real-life applications, several empirical observations of an experienced expert are needed to define these parameters. This fact degrades the applicability of a GA for most of the real-world problems and users. Therefore, this article discusses some possibilities with setting GA parameters. The setting method of GA parameters is based on the fuzzy control of values of GA parameters. The feedback for the fuzzy control of GA parameters is realized by virtue of the behavior of some GA characteristics. The goal of this article is to present the conception of the solution and some new ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1