基于光纤的便携式模块化荧光计

W. Yue, Lei Zhang, Zhenya Guo, Shouzhen Jiang, Chengjie Bai
{"title":"基于光纤的便携式模块化荧光计","authors":"W. Yue, Lei Zhang, Zhenya Guo, Shouzhen Jiang, Chengjie Bai","doi":"10.1117/12.2182022","DOIUrl":null,"url":null,"abstract":"A portable and modularized fluorometer based on optical fiber was proposed in this work. The fluorometer included a light emitter diode (LED) light source module (LSM), a sample cell module (SCM), an optical-electrical converter module (OCM) and a signal process module (SAM). The LEDs in LSM were driven by a constant current source to provide stable exciting light with different wavelength. The OCM included a modularized optical filter and used a photomultiplier tube (PMT) to detect fluorescence signal. The SCM was used to locate sample cuvette and could be connected by optical fibers with the LSM and OCM. Via modularized design, the LSM and OCM could both selected and replaced based on different fluorescence dyes. In order to improve the detecting dynamic range of the fluorometer, the SAM could control the light intensity of LED source in LSM, to control the gain of PMT in OCM, and particularly, four channel signal acquisition circuits with different gain were constructed to collect fluorescence signal simultaneously. Fluorescein isothiocyanate (FITC) was selected as sample to test the fluorometer. The fluorometer has shown a high sensitivity with FITC concentration of 10ng/mL and presented a good linearity from 10 ng/mL to 10 μg/mL.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portable and modularized fluorometer based on optical fiber\",\"authors\":\"W. Yue, Lei Zhang, Zhenya Guo, Shouzhen Jiang, Chengjie Bai\",\"doi\":\"10.1117/12.2182022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A portable and modularized fluorometer based on optical fiber was proposed in this work. The fluorometer included a light emitter diode (LED) light source module (LSM), a sample cell module (SCM), an optical-electrical converter module (OCM) and a signal process module (SAM). The LEDs in LSM were driven by a constant current source to provide stable exciting light with different wavelength. The OCM included a modularized optical filter and used a photomultiplier tube (PMT) to detect fluorescence signal. The SCM was used to locate sample cuvette and could be connected by optical fibers with the LSM and OCM. Via modularized design, the LSM and OCM could both selected and replaced based on different fluorescence dyes. In order to improve the detecting dynamic range of the fluorometer, the SAM could control the light intensity of LED source in LSM, to control the gain of PMT in OCM, and particularly, four channel signal acquisition circuits with different gain were constructed to collect fluorescence signal simultaneously. Fluorescein isothiocyanate (FITC) was selected as sample to test the fluorometer. The fluorometer has shown a high sensitivity with FITC concentration of 10ng/mL and presented a good linearity from 10 ng/mL to 10 μg/mL.\",\"PeriodicalId\":380636,\"journal\":{\"name\":\"Precision Engineering Measurements and Instrumentation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering Measurements and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2182022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2182022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于光纤的便携式模块化荧光仪。该荧光计包括一个发光二极管(LED)光源模块(LSM)、一个样品单元模块(SCM)、一个光电转换模块(OCM)和一个信号处理模块(SAM)。LSM中的led由恒流源驱动,以提供不同波长的稳定激励光。OCM包括一个模块化的光学滤光片,并使用光电倍增管(PMT)来检测荧光信号。该单片机用于定位样品比色皿,并可通过光纤与LSM和OCM连接。通过模块化设计,LSM和OCM可以根据不同的荧光染料进行选择和替换。为了提高荧光仪的检测动态范围,在LSM中可以控制LED光源的光强,在OCM中可以控制PMT的增益,特别是构建了4路不同增益的信号采集电路来同时采集荧光信号。以异硫氰酸荧光素(FITC)为样品,对荧光仪进行检测。该荧光仪在FITC浓度为10ng/mL时具有较高的灵敏度,在10ng/mL ~ 10 μg/mL范围内呈良好的线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Portable and modularized fluorometer based on optical fiber
A portable and modularized fluorometer based on optical fiber was proposed in this work. The fluorometer included a light emitter diode (LED) light source module (LSM), a sample cell module (SCM), an optical-electrical converter module (OCM) and a signal process module (SAM). The LEDs in LSM were driven by a constant current source to provide stable exciting light with different wavelength. The OCM included a modularized optical filter and used a photomultiplier tube (PMT) to detect fluorescence signal. The SCM was used to locate sample cuvette and could be connected by optical fibers with the LSM and OCM. Via modularized design, the LSM and OCM could both selected and replaced based on different fluorescence dyes. In order to improve the detecting dynamic range of the fluorometer, the SAM could control the light intensity of LED source in LSM, to control the gain of PMT in OCM, and particularly, four channel signal acquisition circuits with different gain were constructed to collect fluorescence signal simultaneously. Fluorescein isothiocyanate (FITC) was selected as sample to test the fluorometer. The fluorometer has shown a high sensitivity with FITC concentration of 10ng/mL and presented a good linearity from 10 ng/mL to 10 μg/mL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method of gear defect intelligent detection based on transmission noise Simulation research on ATP system of airborne laser communication Multifocal axial confocal microscopic scanning with a phase-only liquid crystal spatial light modulator Small sample analysis of vision measurement error Double-grating diffraction interferometric stylus probing system for surface profiling and roughness measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1