{"title":"泛化的无分布样本界紧吗?","authors":"C. Ji","doi":"10.1109/IJCNN.1992.227076","DOIUrl":null,"url":null,"abstract":"A general relationship is developed between the two sharp transition points, the statistical capacity which represents the memorization, and the universal sample bound for generalization, for a network composed of random samples drawn from a specific class of distributions. This relationship indicates that generalization happens after memorization. It is shown through one example that the sample complexity needed for generalization can coincide with the capacity point. For the worst case, the sample complexity for generalization can be on the order of the distribution-free bound, whereas, for a more structured case, it can be smaller than the worst case bound. The analysis sheds light on why in practice the number of samples needed for generalization can be smaller than the bound given in term of the VC-dimension.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Is the distribution-free sample bound for generalization tight?\",\"authors\":\"C. Ji\",\"doi\":\"10.1109/IJCNN.1992.227076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general relationship is developed between the two sharp transition points, the statistical capacity which represents the memorization, and the universal sample bound for generalization, for a network composed of random samples drawn from a specific class of distributions. This relationship indicates that generalization happens after memorization. It is shown through one example that the sample complexity needed for generalization can coincide with the capacity point. For the worst case, the sample complexity for generalization can be on the order of the distribution-free bound, whereas, for a more structured case, it can be smaller than the worst case bound. The analysis sheds light on why in practice the number of samples needed for generalization can be smaller than the bound given in term of the VC-dimension.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于由从特定类别的分布中抽取的随机样本组成的网络,在两个尖锐的过渡点,代表记忆的统计容量和用于泛化的通用样本界之间建立了一般关系。这种关系表明泛化发生在记忆之后。通过一个实例表明,泛化所需的样本复杂度可以与容量点重合。在最坏的情况下,泛化的样本复杂度可能与无分布边界的数量级相同,而在更结构化的情况下,它可能小于最坏的情况。分析揭示了为什么在实践中泛化所需的样本数量可以小于vc维给出的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is the distribution-free sample bound for generalization tight?
A general relationship is developed between the two sharp transition points, the statistical capacity which represents the memorization, and the universal sample bound for generalization, for a network composed of random samples drawn from a specific class of distributions. This relationship indicates that generalization happens after memorization. It is shown through one example that the sample complexity needed for generalization can coincide with the capacity point. For the worst case, the sample complexity for generalization can be on the order of the distribution-free bound, whereas, for a more structured case, it can be smaller than the worst case bound. The analysis sheds light on why in practice the number of samples needed for generalization can be smaller than the bound given in term of the VC-dimension.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1