L. Martirano, E. Habib, G. Parise, Giacomo Greco, M. Cianfrini, L. Parise, F. Massarella, Paolo di Laura Frattura
{"title":"采用现场光伏发电的住宅/商业混合建筑的需求侧管理","authors":"L. Martirano, E. Habib, G. Parise, Giacomo Greco, M. Cianfrini, L. Parise, F. Massarella, Paolo di Laura Frattura","doi":"10.1109/ICPS.2017.7945093","DOIUrl":null,"url":null,"abstract":"Buildings with mixed residential and commercial units show relevant power peak that re further enhanced by shifting to electric source of nowadays gas-driven systems. The proposed solution is to organize a microgrid for such kind of buildings, aggregating different users with a common electric distribution system with a unique connection to the grid, a local common generation and a common heating/cooling system (electric-driven). This approach upgrades a group of independent several small users with rigid loads and chaotic behavior, to a large user with a flexible and controlled profile. A central building automation control system (BACS) managing all built-in technical systems and smart appliances may control load minute by minute, shifting in time plannable and controllable ones merging different kinds of load, obtaining a flatter diagram. The authors consider the suggested approach convenient to realize demand side management (DSM) for residential/commercial buildings. DSM exploits the flexibility of smart appliances and the thermal inertia of the structure, by imposing local and central set-points of heating and cooling systems according to the actual global net load and generation at a given moment. In the present paper, main aspects of the proposed control system are presented and simulations for a given case study with local PV generation are provided. Results show that this approach may lead to power peak reduction up to 20% even in the unfavorable case of combining commercial and residential units. Moreover, full self-consumption of locally generated energy from RES may be achieved.","PeriodicalId":201563,"journal":{"name":"2017 IEEE/IAS 53rd Industrial and Commercial Power Systems Technical Conference (I&CPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Demand side management in mixed residential/commercial buildings with PV on site generation\",\"authors\":\"L. Martirano, E. Habib, G. Parise, Giacomo Greco, M. Cianfrini, L. Parise, F. Massarella, Paolo di Laura Frattura\",\"doi\":\"10.1109/ICPS.2017.7945093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buildings with mixed residential and commercial units show relevant power peak that re further enhanced by shifting to electric source of nowadays gas-driven systems. The proposed solution is to organize a microgrid for such kind of buildings, aggregating different users with a common electric distribution system with a unique connection to the grid, a local common generation and a common heating/cooling system (electric-driven). This approach upgrades a group of independent several small users with rigid loads and chaotic behavior, to a large user with a flexible and controlled profile. A central building automation control system (BACS) managing all built-in technical systems and smart appliances may control load minute by minute, shifting in time plannable and controllable ones merging different kinds of load, obtaining a flatter diagram. The authors consider the suggested approach convenient to realize demand side management (DSM) for residential/commercial buildings. DSM exploits the flexibility of smart appliances and the thermal inertia of the structure, by imposing local and central set-points of heating and cooling systems according to the actual global net load and generation at a given moment. In the present paper, main aspects of the proposed control system are presented and simulations for a given case study with local PV generation are provided. Results show that this approach may lead to power peak reduction up to 20% even in the unfavorable case of combining commercial and residential units. Moreover, full self-consumption of locally generated energy from RES may be achieved.\",\"PeriodicalId\":201563,\"journal\":{\"name\":\"2017 IEEE/IAS 53rd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/IAS 53rd Industrial and Commercial Power Systems Technical Conference (I&CPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPS.2017.7945093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/IAS 53rd Industrial and Commercial Power Systems Technical Conference (I&CPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS.2017.7945093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demand side management in mixed residential/commercial buildings with PV on site generation
Buildings with mixed residential and commercial units show relevant power peak that re further enhanced by shifting to electric source of nowadays gas-driven systems. The proposed solution is to organize a microgrid for such kind of buildings, aggregating different users with a common electric distribution system with a unique connection to the grid, a local common generation and a common heating/cooling system (electric-driven). This approach upgrades a group of independent several small users with rigid loads and chaotic behavior, to a large user with a flexible and controlled profile. A central building automation control system (BACS) managing all built-in technical systems and smart appliances may control load minute by minute, shifting in time plannable and controllable ones merging different kinds of load, obtaining a flatter diagram. The authors consider the suggested approach convenient to realize demand side management (DSM) for residential/commercial buildings. DSM exploits the flexibility of smart appliances and the thermal inertia of the structure, by imposing local and central set-points of heating and cooling systems according to the actual global net load and generation at a given moment. In the present paper, main aspects of the proposed control system are presented and simulations for a given case study with local PV generation are provided. Results show that this approach may lead to power peak reduction up to 20% even in the unfavorable case of combining commercial and residential units. Moreover, full self-consumption of locally generated energy from RES may be achieved.