具有多聚类的聚类加权建模

L. Feldkamp, D. Prokhorov, T. Feldkamp
{"title":"具有多聚类的聚类加权建模","authors":"L. Feldkamp, D. Prokhorov, T. Feldkamp","doi":"10.1109/IJCNN.2001.938419","DOIUrl":null,"url":null,"abstract":"Cluster-weighted modeling (CWM) was proposed by Gershenfeld (1999) for density estimation in joint input-output space. In the base CWM algorithm there is a single output cluster for each input cluster. We extend the base CWM to the structure in which multiple output clusters are associated with the same input cluster. We call this CWM with multiclusters and illustrate it with an example.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cluster-weighted modeling with multiclusters\",\"authors\":\"L. Feldkamp, D. Prokhorov, T. Feldkamp\",\"doi\":\"10.1109/IJCNN.2001.938419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster-weighted modeling (CWM) was proposed by Gershenfeld (1999) for density estimation in joint input-output space. In the base CWM algorithm there is a single output cluster for each input cluster. We extend the base CWM to the structure in which multiple output clusters are associated with the same input cluster. We call this CWM with multiclusters and illustrate it with an example.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Gershenfeld(1999)提出了聚类加权模型(CWM)用于联合输入输出空间的密度估计。在基本CWM算法中,每个输入集群对应一个输出集群。我们将基本CWM扩展为这样的结构,其中多个输出集群与相同的输入集群相关联。我们将此称为具有多集群的CWM,并通过一个示例来说明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster-weighted modeling with multiclusters
Cluster-weighted modeling (CWM) was proposed by Gershenfeld (1999) for density estimation in joint input-output space. In the base CWM algorithm there is a single output cluster for each input cluster. We extend the base CWM to the structure in which multiple output clusters are associated with the same input cluster. We call this CWM with multiclusters and illustrate it with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1