Wenwei Yang, Guoxuan Qin, X. Shao, Zhiping Yu, L. Tian
{"title":"sti诱导的机械应力对GIDL的依赖性分析","authors":"Wenwei Yang, Guoxuan Qin, X. Shao, Zhiping Yu, L. Tian","doi":"10.1109/EDSSC.2005.1635390","DOIUrl":null,"url":null,"abstract":"The mechanical stress induced by shallow trench isolation (STI) signifilcantly affects the device behavior in the advanced CMOS technology. This paper presents an STI-dependent gate-induced drain leakage (GIDL) model and investigates the physical mechanisms in this phenomenon. Our simulation indicates that STI-induced compressive stress causes energy band gap narrowing. As a consequence, the effective tunneling barrier height becomes lower and intrinsic carrier concentration increases. These two factors enhance band-to-band tunneling (BBT) and trap-assisted tunneling (TAT), respectively. And an asymmetric layout is proposed to reduce the GIDL current.","PeriodicalId":429314,"journal":{"name":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of GIDL Dependence on STI-induced Mechanical Stress\",\"authors\":\"Wenwei Yang, Guoxuan Qin, X. Shao, Zhiping Yu, L. Tian\",\"doi\":\"10.1109/EDSSC.2005.1635390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical stress induced by shallow trench isolation (STI) signifilcantly affects the device behavior in the advanced CMOS technology. This paper presents an STI-dependent gate-induced drain leakage (GIDL) model and investigates the physical mechanisms in this phenomenon. Our simulation indicates that STI-induced compressive stress causes energy band gap narrowing. As a consequence, the effective tunneling barrier height becomes lower and intrinsic carrier concentration increases. These two factors enhance band-to-band tunneling (BBT) and trap-assisted tunneling (TAT), respectively. And an asymmetric layout is proposed to reduce the GIDL current.\",\"PeriodicalId\":429314,\"journal\":{\"name\":\"2005 IEEE Conference on Electron Devices and Solid-State Circuits\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Conference on Electron Devices and Solid-State Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2005.1635390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2005.1635390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of GIDL Dependence on STI-induced Mechanical Stress
The mechanical stress induced by shallow trench isolation (STI) signifilcantly affects the device behavior in the advanced CMOS technology. This paper presents an STI-dependent gate-induced drain leakage (GIDL) model and investigates the physical mechanisms in this phenomenon. Our simulation indicates that STI-induced compressive stress causes energy band gap narrowing. As a consequence, the effective tunneling barrier height becomes lower and intrinsic carrier concentration increases. These two factors enhance band-to-band tunneling (BBT) and trap-assisted tunneling (TAT), respectively. And an asymmetric layout is proposed to reduce the GIDL current.