{"title":"x跟踪:跟踪人在掩蔽监控视频","authors":"Zewei Wu, Wei Ke, Cui Wang, Z. Xiong","doi":"10.1109/UV56588.2022.10185520","DOIUrl":null,"url":null,"abstract":"Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Tracking: Tracking Human in Masking Surveillance Video\",\"authors\":\"Zewei Wu, Wei Ke, Cui Wang, Z. Xiong\",\"doi\":\"10.1109/UV56588.2022.10185520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
X-Tracking: Tracking Human in Masking Surveillance Video
Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.