{"title":"具有时变网格变形的非线性机电问题多谐公式的自动推导","authors":"A. Halbach, C. Geuzaine","doi":"10.1109/EUROSIME.2016.7463392","DOIUrl":null,"url":null,"abstract":"This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic derivation of multiharmonic formulations for nonlinear electromechanical problems with time dependent mesh deformation\",\"authors\":\"A. Halbach, C. Geuzaine\",\"doi\":\"10.1109/EUROSIME.2016.7463392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic derivation of multiharmonic formulations for nonlinear electromechanical problems with time dependent mesh deformation
This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.