通过字典学习音频指纹识别

Christina Saravanos, D. Ampeliotis, K. Berberidis
{"title":"通过字典学习音频指纹识别","authors":"Christina Saravanos, D. Ampeliotis, K. Berberidis","doi":"10.1109/MMSP48831.2020.9287073","DOIUrl":null,"url":null,"abstract":"In recent years, several successful schemes have been proposed to solve the song identification problem. These techniques aim to construct a signal’s audio-fingerprint by either employing conventional signal processing techniques or by computing its sparse representation in the time-frequency domain. This paper proposes a new audio-fingerprinting scheme which is able to construct a unique and concise representation of an audio signal by applying a dictionary, which is learnt here via the well-known K-SVD algorithm applied on a song database. The promising results which emerged while conducting the experiments suggested that, not only the proposed approach preformed rather well in its attempt to identify the signal content of several audio clips –even in cases this content had been distorted by noise - but also surpassed the recognition rate of a Shazam-based paradigm.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Audio-Fingerprinting via Dictionary Learning\",\"authors\":\"Christina Saravanos, D. Ampeliotis, K. Berberidis\",\"doi\":\"10.1109/MMSP48831.2020.9287073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, several successful schemes have been proposed to solve the song identification problem. These techniques aim to construct a signal’s audio-fingerprint by either employing conventional signal processing techniques or by computing its sparse representation in the time-frequency domain. This paper proposes a new audio-fingerprinting scheme which is able to construct a unique and concise representation of an audio signal by applying a dictionary, which is learnt here via the well-known K-SVD algorithm applied on a song database. The promising results which emerged while conducting the experiments suggested that, not only the proposed approach preformed rather well in its attempt to identify the signal content of several audio clips –even in cases this content had been distorted by noise - but also surpassed the recognition rate of a Shazam-based paradigm.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,已经提出了几种成功的方案来解决歌曲识别问题。这些技术的目的是通过采用传统的信号处理技术或通过计算其在时频域的稀疏表示来构建信号的音频指纹。本文提出了一种新的音频指纹识别方案,该方案能够通过应用于歌曲数据库的著名K-SVD算法来学习字典,从而构建音频信号的唯一且简洁的表示。在进行实验时出现的令人鼓舞的结果表明,所提出的方法不仅在试图识别几个音频片段的信号内容方面表现得相当好——即使这些内容被噪声扭曲了——而且还超过了基于shazam的范式的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-Fingerprinting via Dictionary Learning
In recent years, several successful schemes have been proposed to solve the song identification problem. These techniques aim to construct a signal’s audio-fingerprint by either employing conventional signal processing techniques or by computing its sparse representation in the time-frequency domain. This paper proposes a new audio-fingerprinting scheme which is able to construct a unique and concise representation of an audio signal by applying a dictionary, which is learnt here via the well-known K-SVD algorithm applied on a song database. The promising results which emerged while conducting the experiments suggested that, not only the proposed approach preformed rather well in its attempt to identify the signal content of several audio clips –even in cases this content had been distorted by noise - but also surpassed the recognition rate of a Shazam-based paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1