基于变分贝叶斯与正交匹配追踪融合的稀疏贝叶斯学习

Mohammad Shekaramiz, T. Moon
{"title":"基于变分贝叶斯与正交匹配追踪融合的稀疏贝叶斯学习","authors":"Mohammad Shekaramiz, T. Moon","doi":"10.1109/ietc54973.2022.9796759","DOIUrl":null,"url":null,"abstract":"We address here the non-sparse signal reconstruction behavior of the Gaussian-inverse-Gamma model, in the context of compressive sensing using sparse Bayesian learning with variational Bayes (VB) inference. We estimate the numerical sparsity level of the signal of interest using sparse Bayesian learning and VB inference. Then, we feed the estimated sparsity level along with the estimated variance on the components of the sparse signal to the orthogonal matching pursuit algorithm to refine the reconstruction results. The results show the performance improvement of sparse signal recovery, with a reasonable computation cost.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Bayesian Learning Via Variational Bayes Fused With Orthogonal Matching Pursuit\",\"authors\":\"Mohammad Shekaramiz, T. Moon\",\"doi\":\"10.1109/ietc54973.2022.9796759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address here the non-sparse signal reconstruction behavior of the Gaussian-inverse-Gamma model, in the context of compressive sensing using sparse Bayesian learning with variational Bayes (VB) inference. We estimate the numerical sparsity level of the signal of interest using sparse Bayesian learning and VB inference. Then, we feed the estimated sparsity level along with the estimated variance on the components of the sparse signal to the orthogonal matching pursuit algorithm to refine the reconstruction results. The results show the performance improvement of sparse signal recovery, with a reasonable computation cost.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在压缩感知的背景下,我们使用稀疏贝叶斯学习和变分贝叶斯(VB)推理来解决高斯-反伽马模型的非稀疏信号重建行为。我们使用稀疏贝叶斯学习和VB推理来估计感兴趣的信号的数值稀疏度水平。然后,我们将估计的稀疏度水平和估计的稀疏信号分量方差一起馈送给正交匹配追踪算法,以改进重建结果。结果表明,在合理的计算代价下,稀疏信号恢复的性能得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Bayesian Learning Via Variational Bayes Fused With Orthogonal Matching Pursuit
We address here the non-sparse signal reconstruction behavior of the Gaussian-inverse-Gamma model, in the context of compressive sensing using sparse Bayesian learning with variational Bayes (VB) inference. We estimate the numerical sparsity level of the signal of interest using sparse Bayesian learning and VB inference. Then, we feed the estimated sparsity level along with the estimated variance on the components of the sparse signal to the orthogonal matching pursuit algorithm to refine the reconstruction results. The results show the performance improvement of sparse signal recovery, with a reasonable computation cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1