核参数在SVM性能评价中的作用

Aditi Goel, S. Srivastava
{"title":"核参数在SVM性能评价中的作用","authors":"Aditi Goel, S. Srivastava","doi":"10.1109/CICT.2016.40","DOIUrl":null,"url":null,"abstract":"Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Role of Kernel Parameters in Performance Evaluation of SVM\",\"authors\":\"Aditi Goel, S. Srivastava\",\"doi\":\"10.1109/CICT.2016.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.\",\"PeriodicalId\":118509,\"journal\":{\"name\":\"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICT.2016.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

识别分类器的性能是一项具有挑战性的任务。支持向量机在分类中起着重要的作用。这里使用不同的核参数作为调优参数来提高分类精度。在SVM分类器中,主要有四种不同类型的核(线性、多项式、RBF和Sigmoid)。本文给出了在两个不同的数据集(糖尿病视网膜病变数据集和肺癌数据集)上使用上述核的SVM分类结果。为了评估分类器的性能,我们使用了真阳性率、假阳性率、Precision、Recall、F-measure和准确率作为SVM的性能指标。最后对线性核支持向量机的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of Kernel Parameters in Performance Evaluation of SVM
Identifying performance of classifier is a challenging task. SVM plays an important role in classification. Here different kernel parameters are used as a tuning parameter to improve the classification accuracy. There are mainly four different types of kernels (Linear, Polynomial, RBF, and Sigmoid) that are popular in SVM classifier. The paper presents SVM classification results with above mentioned kernels on two different datasets (Diabetic Retinopathy dataset and Lung Cancer dataset). To evaluate the performance of the classifier we have used True positive rate, False Positive rate, Precision, Recall, F-measure and accuracy as performance measures of SVM. Finally we evaluated that SVM with linear kernel performs best among all.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Based Image Retrieval Using Watershed Transformation Modified ZRP to Identify Cooperative Attacks Short Term Load Forecasting Using ANN and Multiple Linear Regression Prediction of Carbon Stock Available in Forest Using Naive Bayes Approach CAD for the Detection of Fetal Electrocardiogram through Neuro-Fuzzy Logic and Wavelets Systems for Telemetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1