{"title":"射频和微波功率晶体管动态建模的电热x参数","authors":"S. Gillespie, D. Root, M. Marcu, P. Aaen","doi":"10.23919/eumc.2018.8541708","DOIUrl":null,"url":null,"abstract":"For the first time, this paper presents and validates a novel extension of the X-parameter behavioral modeling paradigm to include dynamic electro-thermal phenomena, a key source of long-term memory affecting transistors. The dynamic thermal X-parameter model (DTXM) adds a novel but straightforward method to implement envelope domain sub-circuit in a feedback loop around a conventional static X -parameter model, enabling the simulation of modulated waveform-dependent dynamic self-heating effects. The extended model is identified from conventional CW or pulsed X-parameter measurements, over a range of ambient temperatures. A re-referencing of the extracted X-parameter data to the junction temperature is performed, based on estimated or a calculated thermal resistance and thermal capacitance. The model can also be generated in the simulation environment starting from a dynamic electro-thermal compact time-domain model. The DTXM accounts for thermally-induced asymmetry of intermodulation distortion products and temperature hysteresis depending on the signal bandwidth.","PeriodicalId":248339,"journal":{"name":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrothermal X-Parameters for Dynamic Modeling of RF and Microwave Power Transistors\",\"authors\":\"S. Gillespie, D. Root, M. Marcu, P. Aaen\",\"doi\":\"10.23919/eumc.2018.8541708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, this paper presents and validates a novel extension of the X-parameter behavioral modeling paradigm to include dynamic electro-thermal phenomena, a key source of long-term memory affecting transistors. The dynamic thermal X-parameter model (DTXM) adds a novel but straightforward method to implement envelope domain sub-circuit in a feedback loop around a conventional static X -parameter model, enabling the simulation of modulated waveform-dependent dynamic self-heating effects. The extended model is identified from conventional CW or pulsed X-parameter measurements, over a range of ambient temperatures. A re-referencing of the extracted X-parameter data to the junction temperature is performed, based on estimated or a calculated thermal resistance and thermal capacitance. The model can also be generated in the simulation environment starting from a dynamic electro-thermal compact time-domain model. The DTXM accounts for thermally-induced asymmetry of intermodulation distortion products and temperature hysteresis depending on the signal bandwidth.\",\"PeriodicalId\":248339,\"journal\":{\"name\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eumc.2018.8541708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eumc.2018.8541708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrothermal X-Parameters for Dynamic Modeling of RF and Microwave Power Transistors
For the first time, this paper presents and validates a novel extension of the X-parameter behavioral modeling paradigm to include dynamic electro-thermal phenomena, a key source of long-term memory affecting transistors. The dynamic thermal X-parameter model (DTXM) adds a novel but straightforward method to implement envelope domain sub-circuit in a feedback loop around a conventional static X -parameter model, enabling the simulation of modulated waveform-dependent dynamic self-heating effects. The extended model is identified from conventional CW or pulsed X-parameter measurements, over a range of ambient temperatures. A re-referencing of the extracted X-parameter data to the junction temperature is performed, based on estimated or a calculated thermal resistance and thermal capacitance. The model can also be generated in the simulation environment starting from a dynamic electro-thermal compact time-domain model. The DTXM accounts for thermally-induced asymmetry of intermodulation distortion products and temperature hysteresis depending on the signal bandwidth.